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ABSTRACT 

The traditional models of the effect of assortative mating and inbreeding 
on the genetic variance of polygenic characters (FISHER 1918; WRIGHT 1921) 
presume that there is no natural selection or mutation. In  a large papulation, 
the genetic variance determined by additive genes may then increase by up to 
a factor of two with local inbreeding, and even more with assortative mating. 
The classical models are still used to interpret data from natural populations. 
But contrary to their assumptions, most metrical characters in natural popula- 
tions are usually thought to be under a type of selection which depletes poly- 
genic variation. Mutation is then necessary to maintain genetic variation. 
The present models show that with the additional features of mutation and 
selection, in a large population, the mating system has no influence on the 
amount of genetic variability maintained by additive genes. 

VOLUTIONARY biologists have long been interested in the role of different E mating systems in natural populations, especially their e€fect on the genetic 
variation of polygenic characters. The original models of FISHER (1918) on as- 
sortative mating and WRIGHT (1921 ) on inbreeding are still widely used in text- 
books and in the design of artificial breeding programs. In both of these models, 
it is assumed that there is no natural selection and no mutation operating on the 
character of interest. Thus, the gene frequencies do not change and the breeding 
system only rearranges the existing genetic variation. These assumptions are 
appropriate in artificial breeding where the transient effect of the mating system 
on the genetic variance usually occurs much faster than the action of mutation or 
natural selection. 

In these models the genetic variance maintained under different mating sys- 
tems is expressed relative to the genetic variance in a randomly mating popula- 
tion with the same gene frequencies, V,. In a large population with local inbreed- 
ing, the genetic variance of a character determined by additive genes is 
(1 -I- f )  V,. The inbreeding coefficient for the entire population, f ,  is the propor- 
tional increase in homozygosity in comparison to an effectively panmictic 
population with the same gene frequencies. With local inbreeding, the genetic 
variance of additive genes may increase by up to a factor of two. 
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In an assortatively mating population with a phenotypic correlation A be- 
l 

2nr 
tween mates, the equilibrium genetic variance is Vo/[1-Ah2( 1- -) ] where 

nE is the effective number of loci and hz is the equilibrium heritability of the 
character in the assortatively mating population. Thus strong assortative mating 
for a highly heritable polygenic character can produce a large increase in the 
genetic variance. FISHER (1918) used this model to analyze the effect of assorta- 
tive mating on the variation in human height. 

The situation in natural populations is fundamentally different from the as- 
sumptions of selective neutrality and immutable genes on which the traditional 
models are based. In natural populations which exist for long periods of time, 
selection and mutation cannot be ignored. WRIGHT (1952) showed that the tradi- 
tional formula for the genetic variance in an inbreeding population, (1 + f )  V,, 
also holds when the gene frequencies among partially isclated subpopulations are 
approaching or in a steady state distribution resulting from mutation, migration, 
selection and random drift. I/,, is then defined as the genetic variance in a ran- 
dom mating population with the same distribution of gene frequencies. It  should 
be noted, however, that V,, is not the equilibrium genetic variance in the random 
mating population, except in the absence of selection. When there is selection and 
mutation, the gene frequencies will change with the system of mating. Thus even 
the model of WRIGHT ( 1952) does not allow a comparison of the genetic variance 
maintained in natural populations with different levels of inbreeding. 

Most phenotypic characters in natural populations are probably under a type 
of selection which depletes genetic variance (stabilizing selection or a combina- 
tion of stabilizing and fluctuating directional selection). Mutation is then neces- 
sary to maintain genetic variability in polygenic characters. LANDE (1976a) has 
demonstrated that observed amounts of mutation in polygenic characters of 
maize, mice and Drosophila flies are sufficient to maintain levels of heritable 
variation typical for  such characters, even when there is strong stabilizing selec- 
tion. The present models of mating systems allow for mutation, linkage and 
natural selection. 

THE MODEL 

We consider a character in a diploid population influenced by n genes which 
have additive effects within and between loci. Following a model of KIMURA 
(1965) it is assumed that at each locus there is a wide range of possible allelic 
effects. This is justified by a consideration of the molecular structure of proteins, 
which indicates that there are many possible amino acid substitutions which 
could affect the function of the molecule. Among the major mutations of Dro- 
sophila melamgaster, most groups of independently derived, allelic mutations 
show a multiplicity of phenotypic effects (LINDSLEY and GRELL 1968), and it 
must be supposed that the same is true for the mutations of minor effect which 
contribute to the variation of polygenic characters. It is further assumed that at 
the it” locus every allele mutates with probability p i  each generation and the 
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mutational changes have a mean of zero and variance mi2 for all alleles at the 
locus. It is readily demonstrated that the change per generation in the covari- 
ances of allelic effects between the loci is Sijp+mi2, where S i j  is one if i j and 
zero otherwise (see APPENDIX). The total increase in genetic variance per genera- 
tion by mutation in a diploid population is then 

n 
u2 = 22 p i m 2  . 

m 2=1 i 

It  is also assumed that the character is subject to environmental variance, uez, and 
that there is no interaction or correlation between genetic and environmental 
effects. The recombination rate between loci i and j is denoted as +ij and the 
covariance between allelic effects at these loci in the gametes is Gii ( t )  in genera- 
tion t. The covariances satisfy the relationship 

Ci,(t+l) = (I-rtj) CC,,(t)]w + rzj[C’,,(t)1, + s i j p + m 2  (1) 

where the subscript w indicates that selection has acted and a prime signifies that 
the covariance is between alleles from different gametes. From this point the 
problem is to express [Ci3(t)Iw and [ C ) i j ( t ) l w  as functions of the C+j( t )  and 

In a previous paper, LANDE ( 1976a) explored the maintenance of genetic vari- 
ation in such a system of linked, mutable loci in a random mating population. 
ALAN ROBERTSON and MICHAEL BULMER (personal communication) have sug- 
gested the application of regression analysis to determine the change in the CO- 

variances due to selection on the phenotype. This method will be applied here to 
various nonrandom systems of mating. 

Bdore selection, the covariance C,j ( t )  can be partitioned into a component 
which is independent of variation in the phenotype and a component which de- 
pends only on the variation in the phenotype (KENDALL and STUART 1973, pp. 
337-9). 

( 2 )  

C i j Z ( t )  is the conditional covariance ( for  a fixed value of the phenotype, 2). 
CiZ( t )  is the Covariance between the phenotype and the alleles at locus i in the 
gametes, 

( t )  in different mating systems to solve (1)  as recursion equations. 

Cij(t) = Cii.Z(t) + C,z(t>Ciz(t)/uz2(t) . 

n 

Ci#( t )  =I: 3 =1 [C i j ( t )  + C’ij(t)] . (3) 

The genetic variance that is expressed in the phenotype is 

II 

and the total phenotypic variance is 
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It  is assumed that the regression of the allelic effects at  locus i, xi, on the pheno- 
type is linear, 

x i - & ( t )  =- c i z ( t )  [ z  - z ( t ) ]  + & i . Z  (5a) .‘,w 
ei.$ is an independent residual element of variation in allelic values at locus i, 
which is assumed to be homoscedastic (having equal variance for all z )  . Taking 
the covariance between xi and xj in this form, equation (2) is obtained. Selection 
on the phenotype may be viewed in a graphical sense as changing the weighting 
factors for the distributions olf the residual (ei .$) for different values of z. It is 
evident that selection acting only on z will not alter the regression coefficient (the 
slope of the xi versus z graph) , the linearity of the regression, or the distribution 
of the residual term, though all of the colvariances will change. Thus, after selec- 
tion the regression of [ x i ] w  on [z] is 

[silw- C r E i ( t ) I w = -  c i z ( t )  { [zl, - r z ( t )  -jw> + E i . Z  (5b) 
a: ( t )  

Taking the covariance of [xi] and [xi] in this form gives 

[U: ( t )  110 

[ C i j ( t ) I w  = Cij.$(t) + -- Ciz( t )  cj$(t)/u; ( t )  . 
u p >  

Comparing this with equation (2) , it can be reasoned that b’ecause the last term 
in (2) is due to variation in the phenotype, it is changed by selection in propor- 
tion to the alteration of the phenotypic variance by selection. Using (2) to sub- 
stitute for Cij.$ ( t )  pro’duces 

[cij(t>lw =cij(t) - k(t>ci$(t>Cjz(t) /a2,( t )  ( 6 4  

where k (  t )  = 1 - [uz2 ( t )  ] ,/az2 ( t )  is the proportional reduction of phenotypic 
variance caused by selection. Similarly it can be shown that 

C C ’ i j ( t ) l W  = C’ij(t) - k ( t ) c i Z ( t > C j z ( t ) / a ~ ( t )  * (6b) 

Conditions under which the assumptions of linearity and homoscedasticity of the 
regressions are approximately correct will be discussed later. Substituting equa- 
tions (6) into (1) yields 

A C i j ( t )  = -rij[Cij(t)-C’ij(t)]--k(t)Ci,(t)Cj,(t)/~~(t) . (7) 

These are the general dynamic equations for the genetic structure of a polygenic 
character with additive, mutable genes under natural selection on the phenotype. 
In  subsequent sections we will examine the details of the equilibrium genetic 
structure and some dynamics for specific systems of mating. First we will derive 
general formulae for the expressed genetic variance which is maintained by 
mutation. 
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The diagonal equations in (7) have rii = 0 and 6 i i  = 1. Using a caret to denote 
equilibrium they simplify to 

L A  

-kC;J&; + p i n :  = 0 . 

2&, is the amount of expressed genetic variance attributable to locus i, which 
must be positive. This equation therefore has the unique solution 

The expressed genetic variance is then given by 

This equation may be solved for  $92 using (4b). It is also convenient to use 

as the effective number of loci at equilibrium; with n equally mutable loci 
(,uini2 = pjmj2) we have n E  = n. This definition produces 

With the segregation of many additive genes and an independent, normally 
distributed environmental effect, the phenotype distribution will tend to be 
normal. The selection parameter 12 then depends only on the fitness function for 
the character and the phenotypic mean and variance, G~~ 4- ue2. The recombina- 
tion rates and the correlations between alleles in uniting gametes do not appear 
in equation (9). Thus the formula shows that the expressed genetic variance 
which is maintained by mutation is independent of both the system of mating 
and the linkage map of the loci. The expressed genetic variance is completely 
determined by the mutation and selection parameters, and the environmental 
variance. Using a normal phenotype distribution, expressions for the genetic 
variance can be obtained for particular forms of selection. If the fitness of pheno- 
type z is given by the Gaussian function W ( z )  aexp{--1/2 (z--8)2Jw2} the selec- 
tion parameter is k ( t )  = uz2 ( t )  /[uz2 ( t )  -k w2] which yields 

(10) 

The quadratic deviations fitness function, W ( z )  m l  - ~ ( Z - O ) ~ ,  acting on a 
normally distributed character, has the selection parameter k ( t )  2auZ2 ( t )  , 
(and is valid only for a < 1JuZ2((t) because otherwise a significant fraction of the 
population is assigned negative fitness), so 

3; 2nEUk ( w 2  + U: + %nEuk) + nEuk . 
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This expression is in agreement with that of KIMURA (1965). Despite his assump- 
tion that the loci were uncorrelated, his calculation is correct because the 
expressed genetic variability maintained is independent of the recombination 
rates. Formula (IO) was previously derived by LANDE (1976a). 

It is notable that for both the Gaussian and quadratic deviation fitness func- 
tions, the genetic variance converges to its equilibrium independent of the 
population mean. The expressions (IO) and (11) are therefore valid when the 
optimum phenotype, 0, is fluctuating in time. 

Thus for any form of selection on the phenotype which diminishes the 
phenotypic variance, the mating system and the linkage map of the loci have no 
influence on the amount of genetic variation maintained by mutation. It is 
worthwhile to  emphasize the assumptions which led to this rather startling con- 
clusion. The first is the simplifying assumption that the loci are additive and 
that there is no dominance. The particular model of mutation used here has as 
its main feature that the rate of production of genetic variance by mutation is a 
constant, um2, independent of the background level of genetic variance. The fact 
that mutagenic agents generally increase genetic variance in quantitative char- 
acters of outbred populations indicates that natural populations are not near a 
maximum or saturation level of genetic variance. The following experiments on 
bristle number in Drosophila melanogaster directly demonstrate that the genetic 
variance induced by a given dose of X rays is roughly equal in homozygous and 
heterozygous strains. 

SCOSSIROLI and SCOSSIROLI (1 959) exposed “isogenic” and hybrid populations 
of D. melanogmter to 3000r of X rays per generation while selecting for  in- 
creased sternopleural bristle number. Estimates of the background level of addi- 
tive genetic variance in the control populations were 0.08 (h2 N 0.06) for the 
isogenic line and 0.42 (h2 0.21) for an average of two hybrid populations. The 
additive variance produced by one generation of irradiation was 0.40 in the 
isogenic line and an average of 0.42 in the two hybrid lines. In another experi- 
ment in which the same dose of radiation and selection procedure were practiced 
in alternating generations, the additive variance produced by one generation 
of irradiation was 0.09 in the isogenic line and an average of 0.14 for the two 
hybrid lines. From a comparison of regression coefficients of the mean bristle 
number against time in experimental and control populations, they concluded 
that the irradiation effects in the isogenic and hybrid lines were statistically 
indistinguishable. 

YAMADA and KITAGAWA (1961) studied the effect of X rays on the short term 
response to selection for abdominal bristle number in D. melanogaster. Mutation 
rates were reported in units of genetic variance produced per roentgen of X rays. 
When both sexes were exposed to 1500r each generation, the average mutation 
rate was 28.2 X in hybrid popula- 
tions. When only females were irradiated the mutation rate in the isogenic 
populations was 22.4 X in the hybrid populations. When 
males only were irradiated, the mutation rate was 49.8 X in the isogenic 
populations and 31.4 X le5 in the hybrid populations. 

in isogenic populations and 28.0 X 

and 20.0 X 
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CLAYTON and ROBERTSON (1964) used the response to selection for abdominal 
bristle number to measure the amount of genetic variance accumulated by a 
population of D. melunogmter after 23, 60 and 140 generations of exposure to 
18001- per generation. From an estimated effective population size of 60 and 
assuming that there was no selection on the new mutations in bristle number, 
they calculated the rate of production of new variance at the three times as 
1.8 x 0.6 x and 1 x units per roentgen. These results seem to be 
consistent within the experiment, especially in view of fluctuations in the genetic 
variance which can occur due to random genetic drift in small populations. 

It is also presumed in the present models that the regression of allelic effects 
on the phenotype is approximately linear and homoscedastic. These conditions 
will be discussed further for particular breeding systems. However, it can be 
noted here that if the allelic effects at the different loci are independent, then the 
joint distribution exactly satisfies the requirement of linearity of the regressions. 
Approximate linearity is also expected when the correlations between loci are 
small. The assumption of hobmoscedasticity, that the variance of the residual term 
in equations ( 5 )  is independent of the phenotypic value z, is exactly satisfied 
by a multivariate normal distribution (which also meets the linearity condition, 
KENDALL and STUART 1973). If the linearity assumption is satisfied, approximate 
homoscedasticity is expected when each locus contributes a small fraction of the 
total phenotypic variation, regardless of the form of the distribution of allelic 
effects. We now proceed to the analysis of the equilibrium genetic structure for 
some specific systems of mating. 

Random muting 
With random mating, there is no correlation between alleles in uniting gametes 

so C'5j ( t )  = 0. Using (8), the detailed solution of equations (7) are then of the 
form 

and from (3) 

Since all the correlations are negative, it can be shown that the average magni- 
tude of correlation is less than 1J(n-1) (LANDE 1976a). Inspection of these 
equations shows that the correlation between allelic effects at two loci can be 
high only if the two loci are very tightly linked and isolated on the linkage map 
from other loci of comparable mutability. Thus, except for some cases of very 
tight linkage, the smallness of the correlations guarantees that in the gametes, 
the regressions of allelic effects on the phenotype are approximately linear. With 
a Gaussian fitness function, this solution is identical to that obtained by LANDE 
(1976a) for a multivariate normal distribution of allelic effects. 
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Inbreeding 
In  a large population which is inbreeding because of limited dispersal or due 

to some regular system of inbreeding, such as partial self-fertilization, there is a 
deficiency of heterozygotes compared to that expected in a panmictic population 
with the same gene frequencies. The inbreeding coefficient f is defined as the 
proportional deficiency of heterozygotes (WRIGHT 1921). It should be noted that 
with mutation the maximum value of f is less than one. When the genes have 
purely additive effects on the phenotype, inbreeding is reflected in a correlation 
between effects of alleles at the same locus in uniting gametes, p’, ,( t)  = f .  This 
inbreeding will also produce an indirect covariation between alleles at different 
loci in uniting gametes. This indirect covariance can be derived from the regres- 
sion of x’, on the allelic effects at the same locus of the complementary gamete 
in the zygotes, 

2, - Z’%(t)  = f[Z, - & ( t ) ]  + 
Multiplying by 5, - 2, ( t )  and taking expectations, 

C’1.j ( t )  = fC,, ( t )  * (13a) 

E [  (xJ - 2, ( t )  ) E,‘ = 0 because xJ and Y, can only become correlated by the 
inbreeding effect acting through s,, which is held constant in the residual. This 
result can also be derived by the method of path analysis (WRIGHT 1934; LI 
1976). I n  the path diagram for this system, the 2, are completely determined 
by the set of correlated s,, and a distinct set of correlated residuals, E % ‘  , as in the 
above regression equation. The relation which emerges is pt1.3 ( t )  = f p r j  ( t )  in 
agreement with (1 3a). 

Substituting (13a) in equation ( 7 )  gives the rate of decay of the covariance 
between loci i and i as (1  - f )  r ,  in a large population. By comparison with the 
random mating system, all recombination rates are multiplied by (1-f). In- 
breeding therefore has an effect similar to tightening the linkage. Referring to 
equation (3) , 

&iz= (l+f) 3 =1 : e,j . (13b) 

Using equation (8) the off-diagonal equations in (7)  yield the solutions 

Returning to (13b) 

Since all the correlations between alleles in the gametes are negative, it is again 
the case that the average magnitude of correlation between loci in the gametes 
is less than l/(n-I). From this solution, it can be seen that the allelic effects at 
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two loci can be highly correlated only if the loci are tightly linked and isolated 
on the linkage map from other loci of comparable mutability, as in the case of 
random mating, 

The small average magnitude of correlation between loci in the gametes par- 
tially validates the use of the linear regression equations (5) as an  approxima- 
tion. With inbreeding, the joint distribution of xi and z‘, is composed of an  
uncorrelated part of weight ( 1  -f) and a perfectly correlated part of weight f. 
Since both of these parts have linear, homoscedastic regressions, their sum (the 
regression preceeding equation 13a) is linear, but not exactly homoscedastic. 
This causes a deviation from homoscedasticity of the regression of zi on the 
phenotype in (5a). Nevertheless, equations ( 5 )  should still be approximately 
correct for any degree of inbreeding if the selective coefficients on the individual 
loci are small, as would be the case when there is a large effective number of 
loci (BULMER 1971) or the heritability is low. 

Though inbreeding has essentially no direct influence on the amount of genetic 
variance maintained by mutation, there may be an indirect effect if the inbred 
individuals are less stable in their development than outbred individuals. This 
would create a heterozygote advantage in fitness at the single locus level (LERNER 
1954) , further augmenting the genetic variance above that given here. 

Assortative mating 
Phenotypic assortative mating is assumed to take place such that the regression 

of the phenotype on that of the mate is linear, with the phenotypic correlation 
between mates being A. The phenotypic covariance among mating pairs formed 
after selection is then A [ ~ , ~ ( t - l ) ] ~  in generation t-1. ‘To distinguish the two 
parents, an equation analogous to (5b) is written, but with a subscripted 
phenotype, 

and there is a similar regression of [si]w on [zZ],. The covariance between 
alleles at locus i in the first parent with alleles at locus j in the mate in generation 
t-1 is then 

[c;. (t-1) l w  = A [U; (t-1 ) IwCiz (t-I ) cj, ( t -1)  /U ;  (t-1) . 
E [ E ~ . ~ ~ E ~ . ~ ? ]  = 0 because the only solurce of correlation of [si]w with [xjlw in 
the mate is through the phenotypes, which are held constant in the residuals. 
Since mutation and recombination will not affect the covariance of alleles 
in mates, it is apparent that [C* i j ( t - l ) ]w  is equal to the covariance between 
alleles in uniting gametes, CYij ( t )  . Using the definition [uz2 (t-1) ] = 

(14a) 

In the extreme case of k ( t - I )  = 1, no phenotypic variance remains after selec- 
tion, and the covariance between alleles in uniting gametes is zero. With no 

[ 1 --k ( t - I  ) 1 ug2(t-1), 

C’ij ( t )  = [ 1-k(t-1) ] AC,,(t-1)CjZ(t-1)/u~ (t-1) . 
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selection and perfect assortative mating, this reduces to the covariance due to 
variation in the phenotype alone, as in formula (2) .  This expression can also be 
obtained by the method of path analysis. In  the pnth diagram the correlation 
between [zl], and [z , ] ,  is A, and the allelic values within individuals, [z,] 
are completely determined by the selected phenotype and a set of correlated 
residuals, c l  as in the regression equation for this system. From this the follow- 
ing relation is derived, 

c p:, (t-1) I I D  = [ P l Z  (t-1) I d  cp,: (t-1) 1 PO 
or converting to covariances 

Cc:, ( t-i 1 2b A LC 12 ( t-l ) 1 1‘ [ c J Z  (t-l ) 1 fC /  [ (t-l ) 3 IO 

Multiplying equation (5b) by [ z ]  taking expectations and using the 
definition of [ ~ , ~ ( t ) ] ~ ~ ,  it is found that [ C , , ( t ) ] 1 0  = [ l - k ( t ) ] C , , ( t ) .  Substituting 
this and the definition of in the above expression, we again derive 
(14a). 

[Z ( t )  ] 

(t-1) ] 

Employing the relation (14a) in ( 3 )  at  equilibrium, 

where k = ~ ? ~ ~ / i ? . ; ~ .  Using (14a) and (8) the off-diagonal equations in (7 )  a t  
equilibrium give 

Returning to (14b) and again using (8) , 

The phenotypic correlation between mates, A, may be either positive or nega- 
tive. If A is negative all correlations between alleles in gametes are negative and. 
as above, the average magnitude of correlation is less than l/(n-1), showing 
that the assumption of linearity of the joint distribution of alleles i n  the gametes 
is a good approximation. The system of mating, which entails linear correlation 
between the phenotypes of mates, then guarantees that this approximation holds 
good for alleles in uniting gametes. With positive assortment of mates, the corre- 
lation “ p j  will be negative if A < %/{ ( l -%)rLj} ,  which will tend to occur with 
tight linkage and strong stabilizing selection. Loose linkage, weak stabilizing 
selection and strong positive assortment of mates can produce large positive 
correlations between alleles in the gametes, and the assumption of linearity of 
the regressions may no longer be valid. 
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The effective number of loci defined here prior to equation (9) can be com- 
pared with that used by FEUENSTEIN and CROW for FISHER'S moldel of assorta- 
tive mating with additive genes (CROW and KIMURA 1970, p. 153). Their 
effective number, ne, is expressed in terms of the covariances of allelic effects in 
uniting gametes. At equilibrium, in the present notation this is 

Substituting (14a) and then (8) this becomes equivalent to nE. Their effective 
number of loci, defined in terms of the assortative mating system, is identical to 
that used here, which is expressed solely by the mutation parameters. 

DISCUSSION 

The traditional models of mating systems (FISHER 1918; WRIGHT 1921) pre- 
dict substantial increases in the genetic variance of polygenic characters in 
inbreeding and assortatively mating populations in comparison to a randomly 
mating population with the same gene frequencies. In these models it is assumed 
that there is no mutation and no natural selection to change the gene frequencies. 
In the present models the amount of polygenic variation maintained is deter- 
mined by a balance between mutation and an arbitrary form of phenotypic 
selection which depletes genetic variation. This includes stabilizing selection, 
and many types of fluctuating selection with a directional component. Recom- 
bination and the mating system act at an intermediate stage of the process to 
rearrange the mutations that natural selection acts upon. The model of mutation 
employed here is believed to be fairly realistic for natural populations (see 
above). After allowing for mutation, linkage and natural selection on a poly- 
genic character with additive genes, it is found that, in contrast to the traditional 
models, the system of mating has no influence on the amount of genetic variance 
maintained. 

This result indicates that, at least in large populations, the adaptive signifi- 
cance of different mating systems is not to be found in the amount of genetic 
variability maintained. Thus in a large population, where the rate of evolution 
is governed by the additive genetic variance (FISHER, 1930), the mating system 
would not affect the rate of evolution. However, in a spatially subdivided popula- 
tion with partially isolated local populations, evolution may proceed faster by 
genetic drift to new adaptive peaks for gene frequencies (WRIGHT 1932) or adap- 
tive zones for phenotypes (LANDE 1976b). 

In populations which are subject to frequent local extinction, transient effects 
of the mating system may be important in regulating the amount of genetic 
variability in local populations. For example, if the genetic variance has been 
depleted in a population crash, positive assortative mating will speed up the rate 
of approach to the equilibrium level (see Figure 1 ) . This occurs because positive 
assortative mating decreases the variance of allelic effects at each locus which 
must be accumulated by mutation (equation 14d). Conversely, negative assorta- 
tive mating slows the rate of approach to equilibrium. The influence of inbreed- 
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t Gene ra t  ions 
FIGURE 1.-Examples of the approach to equilibrium of the genetic variance, with different 

clegrees of assortative mating and inbreeding. A is the phenotypic correlation between mates and 
f is the inbreeding coefficient. The genetic variance, u92(t) ,  is plotted relative to the environ- 
mental variance, u,2. In both graphs, the character is affected by 10 freely recombining, equally 
mutable loci with um2/ue2 = 16-3, which is typical of characters in mice, maize and fruit flies 
(LANDE 1976a). The phenotype is normally distributed and has a Gaussian fitness function (see 
equation I O )  with w/oe = 4. At equilibrium the heritability is 0.37 and = 0.09, which corre- 
sponds to a phenotypic load (% selective mortality) of 4.6%. 
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ing on the rate of approach to equilibrium is more complex, as the variance of 
allelic effects at each locus is not a monotonic function of the inbreeding coeffi- 
cient (equation. 13d). If linkage is not very tight, low or moderate levels of 
inbreeding will speed up the rate o€ approach to equilibrium, while with high 
levels of inbreeding the rate of approach to the equilibrium is initially faster 
but ultimately slower than with random mating (Figure 1).  In general, the 
quantitative effect of the mating system on the rate of approach to the equilib- 
rium genetic variance depends on the details of the recombination and mutation 
rates of the individual loci. 

Other aspects of population structure and ecology not treated in these models 
may exert significant selective pressure on genes controlling the mating system. 
Positive assortative mating may entail an additional selection against extreme 
forms, thus reducing the amount of genetic variance maintained in comparison to 
a random mating population. Inbreeding reduces gene flow from adjacent popu- 
lations which may be adapted to different environmental conditions, but will 
increase the genetic load due to deleterious recessive mutations by restricting the 
local effective population size (CROW and KIMURA 1970). The ability to self- 
fertilize may be important for colonizing species, as when one seed reaches an 
island, though STEBBINS (1965) concluded that among the native California 
flora, no particular type of mating system favors the evolution of weediness. 
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APPENDIX 

Denoting the allelic affect at locus i in the gametes as xi with mean Zi, and letting 
yi = x i  - Zi be the deviation from the mean, the covariance of allelic effects at loci i and i 
before mutation is C i j  = E [ y i y j ] .  A mutational change at locus i is written as Pi where 
E[Pi]  = 0 and E[Pi2] = mi2 .  The covariance after mutation for i # i is 

( 1 -ai) (1 --ai) E CYiYjI + P i  ( 1 - P i )  E [ ( Y i f P i )  Y j l  + (l-Pi)PjErYi+Pj)l + PiPjEl : (Yi+Pi)  (Yj+Pj)l . 
Because mutation occurs independently at each locus E [ P i P j ]  = E I P i r j l  = 0, and this expres- 
sion then reduces to E[yiyj], showing that the covariances, Cij for if;, are not altered by 
mutation. Similarly the variance at locus i before mutation is Cii = E[yi2]  and after mutation is 

( 1 - ~ . j ) E [ ~ i ~ l  + ~ i E C ( ~ i f P i ) ~ l  . 
By assumption E[y iP i ]  = 0 and this expression reduces to Cii f pimi2. Thus the change in 
Cij due to mutation is Sijpimi2, where S i i  = 1 if i = i and 0 otherwise. 


