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ABSTRACT 

Mathematical studies are conducted on three problems that arise in 
molecular population genetics. ( 1 )  The time required for a particular allele 
to become extinct in a population under the effects of mutation, selection, and 
random genetic drift is studied. In the absence of selection, the mean extinction 
time of an allele with an initial frequency close to 1 is of the order of the 
reciprocal of the mutation rate when SNu << 1, where N is the effective 
population size and U is the mutation rate per generation. Advantageous muta- 
tions reduce the extinction time considerably, whereas deleterious mutations 
increase it tremendously even if the effect on fitness is very slight. (2) Mathe- 
matical formulae are derived for the distribution and the moments of extinc- 
tion time of a particular allele from one or both of two related populations 
or species under the assumption of no selection. When 4Nu << 1, the mean 
extinction time is about half that for a single population, if the two populations 
are descended from a common original stock. (3) The expected number as 
well as the proportion of common neutral alleles shared by two related species 
at the tth generation after their separation are studied. It is shown that if 4Nu 
is small, the two species are expected to share a high proportion of common 
alleles even 4N generations after separation. In addition t o  the above mathe- 
matical studies, the implications of our results for the common alleles at protein 
loci in related Drosophila species and for the degeneration of unused characters 
in cave animals are discussed. 

HEN two populations are reproductively isolated, their genes are gradu- 
Wally differentiated from each other, owing tc mutation, selection, and 
random gmetic drift, and the number of common alleles shared by the two popu- 
lations declines. We may then ask: How long does a particdar allele that was 
present in the ancestral population persist in the two1 descendant populations? 
What is the expected number of common alleles shared by the two populations 
at the tth generation after population splitting? What is the probability that the 
two populations are monomorphic for the same allele at the tth generation? The 
last problem has already been studied by NEI and LI (1975) under the assump- 
tion of neutral mutation, but the first two questions have yet to be answered. 
These problems are of considerable importance in evolutionary studies. Since the 
allelic differences at a structural locus can now be studied by examining thp 
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amino acid sequence or the electrophoretic mobility of the protein produced, 
the mathematical theory developed may be directly applicable to real data. 

In  the present paper we shall attempt to answer the first two questions. Before 
answering these questions, however, we need to study a simpler problem: HOW 
long doss it take for a particular allele to become extinct in a single population? 
For those alleles which are segregating in the initial population, this problem 
has been studied by KIMURA and OHTA (1969a,b), disregarding the effect of 
mutation. In practice, however, the effect of mutation cannot be neglected in 
long-term evolution. Thus. an allele may be temporarily fixed in a population, 
but in the presence of mutation pressure it will eventually be eliminated from 
the population, unlas it is maintained by some strong selective force. Note that 
at the molecular level new mutations are almost always different from the extant 
alleles. The extinction time of an allele in a population under the effect of irre- 
versible mutation can be studied by using the method o€ EWENS (1964) and 
NAGYLAKI (1974). Furthermore, using a different method, NEI (1 976) obtained 
the distribution as well as the mean and variance of the fixation time of a neutral 
allele when mutation is recurrent. This distribution is directly applicable to the 
present problem if the direction of mutation is reversed. In the present paper we 
shall consider both neutral and selectivc genes. 

Although the primary purpose of this paper is to study the persistence of com- 
mon alleles in two related populations, the theory developed will also be important 
for understanding some other problems such as degeneration of unused characters 
and the role of slightly deleterious mutations in evolution (OHTA'S (1974) hy- 
pothesis). 

EXTINCTION TIME O F  A N  ALLELE IN A POPULATION 

Let us considcr a random mating papulation of effective size N .  We denote the 
allele under consideration by A.  We assume that this allele mutates to other 
alleles, but mutation from other alleles to this allele is practically negligible. We 
consider all alleles other than A as a single class and dmote them by a. Let U be 
the mutation rate per gene per generation. Therefore, A mutates to a irreversibly 
at the rate of U per generation. For simplicity, we consider only genic selection 
and assume that the relative fitnesses of genotypes AA, Aa, and aa are 1, 1 + S. 
and +2s, respectively. Thus, s > 0 (s < 0) means that all new mutations have 
a selective advantage (disadvantage) of s over A ,  whereas s = 0 means that new 
mutations are all neutral. Now let the initial frequency of A be p and the fre- 
quency at generation t be z. Our situation is then equivalent to EWENS' (1964) 
diallelic model: A mutates to a irreversibly and absorption occurs only at x = 0. 
The mean sojourn time, ~ ( p , x ) ,  of A at a particular gene frequency class x, start- 
ing from the initial frequency of p to its extinction, i.e., z = 0, has been studied 
by EWENS (1964) and NAGYLAKI (1974). The mean extinction time is given by 

T (p) = J: 7 (p,x) dx, or more explicitly 



PERSISTENCE O F  COMMON ALLELES 

where M = 4Nv, S = 4Ns, and 

1, 

g(a,b) =la eS"(l-x)-%& . 

903 

When p = 1 and mutations are neutral, formula ( 1 ) is simplified and given by 
4N T(1)  = z 

i=l i(M+i-1) 
As mentioned earlier, allele A may become temporarily fixed in the popula- 

tion, owing to random genetic drift. It is therefore interesting to know the ex- 
pect.ed number of generations in which the frequency of A is higher than 1 - a, 
where a is a small quantity. We denote this expected number of generations by 
t ( p ,  1 - a) and call it the mean sojourn time at the monomorphic class. This 
mean sojourn time is given by 

t ( p ,  1-a) 7 ( p 7 x ) d x  , (3a) 

which becomes 

when p = 1 .  If M < 1, formula (3b) can be approximated by 

In the case of advantageous mutations (S > 0), the above formula may be 
written as 

t (1 , I -a )  4NS(aS)MM-ir(l-M)P(1-M,S) , 

where P (.;) denotes the incomplete gamma function (ABRAMOWITZ and STEGUN 
1964). For neutral mutations (S = 0), formula (3a) reduces to 

aM[l-(l--p)l-M] , M # 1, (5a) 
4N t ( p ,  1-a) = 

M(1-M) 

when p I 1 - a, and 

4N 2 
l-M M 

t(1,l-a) =- [--,a] , M Z 1 ,  (5c) 

( 5 4  = 4°C l-Zogea] , M = l ,  

when p = 1. 
The higher moments of extinction time may be obtained by following the 

method of NAGYLAKI (1974) (see also MARUYAMA and KIMURA 1971) , but they 
are too complicated to be of practical use. In the case of neutral mutations, how- 
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ever, the probability distribution as well as the higher moments of extinction 
time have been obtained by NEI (1976), though the direction of mutation has to 
be reversed. Namely, the probability that A becomes lost by the tth generation 
is given by 

CO r(i-l+M) (M+2i-l) 
2.=1 r ( M ) i !  

f ( p , O ; t )  = 1 - p  I: (-1)i-1- 

x F(1-i, i S M ,  M ,  l-p)exp{-Ait} . (6) 

In  the above formula, F(.,.,.,.) denotes the hypergeometric function and X i  = 
i( M f  i - 1 ) /4N. By using this distribution, it can be shown that the nth moment 
of extinction time is 

CO 

i=1 r ( M ) i !  (hi)" 
r (i- 1 +M)  (M+2i-I) 

p'%(p) = n ! p  I: (-1)i-1 

x F(l-i, i - t M ,  M ,  l-p) , (7) 

(NEI 1976). The above series converges for all M if p < 1, though the rate of 
convergence is very slow if M is large and p is close to 1. However, if p = 1, it 
converges only if M is smaller than 3. 

We note that for the case of neutral mutations, the mean extinction time of 
allele A can be computed either by formula (1) or by formula (7). Theoreti- 
cally, these two formulae should give the same value, because they are based on 
the same diffusion model, though derived in different ways. It call be shown that 
they are identical for the following two values of M :  

T(1) = p ; ( l )  =4Nn2J6, i f M = 1  
T(1) = p i ( 1 )  =4N; i f M = 2  . 

In addition, for M << 1, both formulae give the same approximate value 4N f 
1 / U  if p = 1. It seems, however, difficult to show that they are identical in general. 

Figure 1 shows the probability distribution of extinction time for p=O.5, 
assuming 4Nv = 0.1. The distribution resembles the gamma distribution and is 
very similar to that of the conditional fixation time of a single neutral mutation 
(KIMURA 1970), though the mean is about 6 times larger compar.2d with the 
latter case (see Table 2). There is virtually no probability of A becoming extinct 
before 0.1 N generations. The probability density, however, increases sharply as 
t becomes larger than 0.1N generations and reaches its maximum at t = 1.2N 
generations. It then declines, first rapidly and then gradually. Thus. the prob- 
ability distribution has a long tail. The shape of the probability distribution of 
extinction time for p = 1 is similar to that for p = 0.5 (see Figure 2, NEI 1976), 
though the mean is much larger and the maximum density is located at t = 8N 
generations. Numerical computations have shown that the shapes of the distribu- 
tions for 4Nv = 0.01 are very similar to those for 4Nv = 0.1, but they are more 
flatly distributed and have a larger mean. 

Tables 1 and 2 show the mean extinction times and their decompositions 
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FIGURE 1 .-Probability distribution of extinction time of a neutral allele under neutral muta- 

tion pressure for the case of p = 0.5 and 4Nu = 0.1. Time is measured in units of 4N generations. 
This distribution has mean p1 = 5.80, standard deviation U = 8.76, skewness y1 = 2.63, and 
kurtosis y2 = 9.6. 

into mean sojourn times for  several gene frequency intervals for neutral and 
advantageous mutations. It is clear that in the case of p = 1 both mutation and 
selection have a strong effect on the mean extinction time (Table 1 ) . Let us first 
consider the effects of the variations in M = 4Nv and S = 4Ns when N is fixed. 
In the case of neutral mutations the mean extinction time for a given value of N 
is roughly inversely proportional to mutation rate if M i 1. Advantageous muta- 
tion decreases the extinction time, as expected. If S = 100 and M = 0.001, the 
mean extinction time is about 100 times shorter than that for  the case of S = 0 
and M = 0.001. It  is interesting to note that for the three cases of (1) S = 0: 
M = 0.1, (2 )  S = I O ;  M = 0.012, and ( 3 )  S = 100; M = 0.001, the mean extinc- 
tion time is nearly the same. Yet if we look at  the sojourn times for the gene fre- 
quency intervals (0.099), (0.99, 0.999), and (0.999, 1 ) , ther? is a tendency for 
the proportion of the time spent for (0.999, 1). i.e. t (  1,0.999) in (3a), to increase 
as S increases. This tendency occurs because selection is not very effective in this 
interval and gene frequency change is largely determined by mutation and ran- 
dom gaet ic  drift. 

When mutation rate is fixed, but population size varies, some caution is re- 
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TABLE 1 

Mean extinction times and their decompositions into mean sojourn times in three gene 
frequency intervals with the initial frequency of p = 1 

~ ~~~~ ~~~ ~ ~ 

Selection Mutation Mean Mean sojourn times' 
intensity pressure extinction time' (0,0.99) (0.99,0.999) (0.999,l) 

s+= 0 M$= 1 
M = 0.1 
M = 0.01 
M = 0.001 

M = 0.1 
M = 0.01 
M = 0.001 

M = 0.1 
M = 0.01 
M = 0.001 

s = 10 M = l  

s = 100 M = l  

1.65 
10.94 

101.0 
1001.0 

0.544 
1.53 

10.42 
99.07 
0.104 
0.197 
1.05 
9.61 

I .59 
3.94 
4.53 
4.60 
0.514 
0.700 
0.732 
0.73 6 
0.091 1 
0.0969 
0.0976 
0.0977 

0.048 
1.44 
2.20 
2.29 
01.025 
0.172 
0.224 
0.231 
0.0107 
0.0205 
0.0228 
0.0231 

0.008 
5.56 

94.3 
994.1 

0.005 
0.662 
9.46 

0.003 
0.080 
0.934 
9.49 

98.1 

* Time measured in units of 4N generations. + S = 4Ns. 
$ M = 4Nv. 

quired in the interpretation of Table 1 (and 2)  , since the unit of the extinction 
time in this table is 4iV generations. Thus, in a small population the absolute 
mean extinction time may be small even if the valu-2 in this table is relatively 
large. If we note this property, it is clear that the mean extinction time for the 
case of S = 0 and 4N << l / v  is almost independent of population size and ap- 
proximately given by l / v .  When there is selection, the mean extinction time 

TABLE 2 

Mean extinction times and their decomposiiions into mean sofourn times in four gene 
frequency intervals with the initial frequency of p = 0.5 

Selection Mutation Mean Mean sojourn times' 
intensity pressure extinction time' (0,0.5) (0.5,0.99) 0.99,0.999) (0.999,l) 

s+= 0 M$= 1 
M = 0.1 
M = 0.01 
M = 0.001 

M = 0.1 
M = 0.01 
M = 0.001 

M = 0.1 
M = 0.01 
M = 0.001 

s = 10 M = l  

s = loo M = l  

1 .(26 
5.80 

50.8 
500.8 

0.29 
0.32 
0.39 
0.99 
0.052 
0.052 
0.052 
0.052 

0.582 
0.68 
0.69 
0.69 
0.26 
0.27 
0.28 
0.28 
0.051 
0.052 
0.052 
0.052 

0.474 0.006 0.0007 
1.86 0.67 2.59 
2.25 1.10 46.8 
2.29 1.15 496.7 
0.029 10-5 10-e 
0.042 0.001 0.004 
0.045 0.002 0.06 
0.046 0.002 0.67 
0.0004 6 x 4 x lW7 

0.0004 6 X 10-24 2 x 10-z2 
0.000.~ 4 x  10-24 10-23 

0.0004 7 x 10-24 2 x 10-20 
* Time measured in units of 4N generations. + S = 4Ns. 
$ M= 4Nv. 
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generally decreases as N increases. Thus, in the case of S =lo and M = 0.1, T (  1) 
is 10 X 4N generations, whereas in the case of S = 100 and M = 0.1 where N is 
10 times larger, T (  1) is 0.8N generations. Decomposition of T (  1) into its sojourn 
times shows that the reduction in T (1 ) in large populations is due to the reduction 
of t (  1,0.999). Namely, in large populations the mean sojourn time at the mono- 
morphic class with CY = 0.001 is much shorter than in small populations. How- 
ever, the absolute sojourn time for  the interval (0, 0.99) is larger for the case of 
S = 100 and M = 0.1 than for the case of S = 10 and IC1 ~ 0 . 0 1 .  Of course, for a 
given value of M selection always reduces the sojourn time for any gene fre- 
quency interval and consequently the mean extinction time. 

When the initial gene frequency is intermediate, selection seems to have a 
stronger effect on extinction time than mutation (Table 2). In the case of p = 0.5 
and S = 100, the mean extinction time for a given value of N is virtually the 
same for all the mutation rates considered. This is because the advantageous 
mutation existing in the original population is almost always fixed rather quickly 
by selection. When S is as small as 10, how.ever, the effect of mutation is appreci- 
ably large. In  the absence of selection the extinction time for p = 0.5 is about 
half that for p = 1 when M << 1. This is because for M << 1 and p 2 0.4, 
p: ( p )  in (7 )  is approximately given by p ( M  + 1)Ju.  An intuitive explanation 
of this formula is as follows: When the initial gene frequency of allele A is p and 
M is small, allele A is quickly eliminated from the population with a probability 
of about 1 - p,  whereas it is temporarily fixed with a probability of about p .  In  
the latter event it takes about ( M  -I- 1 ) / U  generations for the allele to be eventu- 
ally lost (NEI 1976). Thus, we have fitl ( p )  = p ( M  + 1 ) / U  approximately. 

Recently, OHTA (1 974) emphasized the importance of slightly deleterious 
mutations in molecular evolution. She postulates that the level of protein poly- 
morphism in large populations is determined mainly by mutation-selection bal- 
ance, whereas allele substitution in evolution occurs by random genetic drift. In 
this hypothesis the rate of allele substitution is expected to be slowed domm in 
large populations. How long then does it take for an allele to be replaced by 
slightly deleterious genes under irreversible mutation? This question can be 
answered by studying the mean extinction time for negative values of S. This 
mean extinction time is presented in Table 3 for various values of S and M .  It  is 
clear that if S is smaller than -50, the extinction time is very large even if M is 

TABLE 3 

Mean times* for a type allele to be replaced by slightly deleterious alleles under 
recurrent mutation. The initial gene frequency is 1 

~ 

M h s t  -2 -5 -10 -20 -50 -100 

10 0.35 0.41 0.41 4.3 6.1 x 10s 1.2 x 1027 
1 2.79 9.93 281.38 1.3 x 106 2.1 X 1018 2.5 x 1039 
0.1 30.91 251.23 1.7 x IO3 1.7 x los 6.7 X lozo 1.6 x 

* Time measured in units of 4N generations + S = 4Ns. 
$ M= 4Nu. 
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as large as 10. This suggests that the replacement of a type allele by slightly 
deleterious alleles is an extremely slow process in large populations. 

PERSISTENCE O F  A N  ALLELE IN TWO POPULATIONS 

Let us now consider how long a particular allele persists in two populations 
derived from a foundation stock. In this and following sections, we shall consider 
only neutral alleles, since selection introduces a number of difficulties. We shall 
also assume that the two descendant populations are reproductively isolated 
immediately after separation. We denote by N ,  and N 2  th.3 effective sizes of 
populations 1 and 2, respectively. We also denote by x and y the frequency of a 
particular allele, A ,  in the populations 1 and 2, respectively, with x = p and 
y = q at t = 0. Let f (p ,O; t )  be the probability that A becomes lost in population 
1 by the tth generation and g(q,O;t) be the corresponding probability in popula- 
tion 2. Then, the probability that A still exists in both populations at generation 
t is given by 

The probabilities f and g can be obtained h m  (6) by a proper substitution of 
parameters. The probability given by (8) may be called the probability of com- 
mon existence of A .  

This probability includes the cases where A exists in a low frequency in one 
or both of the two populations. In practice, however, low fp2quency alleles may 
not be detected by usual surveys of allele frequencies. In this care it would be 
more appropriate to define the probability of common existence by considering 
only those cases where the frequency of A is equal to or higher than Q in both 
populations, in which (Y is a small quantity such as 0.01. Namely, at generation t 

where P ( x  2 a,p;t)  is the probability of z being equal to or larger than (Y in 
population 1. It is given by 

Q ( ~ , q ; t )  = C1 - f ( p , o ; t > l  [1 - g(q ,o; t ) l  . (8) 

Q(p,q;a; t )  P ( z  2 m,p;t)P(y 2 a,q;t) (9) 

00 

i=O 

(M,+1+2i) r (Mi+l  +i) r (Ml+i) 
i! (if1 ) !r2 ( M 1 ) M ,  

P(x2a ,p; t )  =p(l-(Y)% z -___- -- 

x F(--i.ifM1+1,M,,1-p) 

x F (  -i,i+M,+l ,Ml+l ,I -.) e-[ ( i  + l) (HI+ /4N1) I t  , (10) 

where M ,  = 4N1u (see formula (3) of NEI and LI (1975)). P ( y  2 a, q;t)  is the 
corresponding probability for population 2. 

For a large t with (221 + l/2Ni)t >> 1 (i = 1,2), (9) is given by 

Q(p,q;a;t)  = ( l - (~)~l+~2(M1+1)  (M,+l)pq ezvt (11) 

approximately. The corresponding formula for  Q(p,q; t )  is (Mi 4- 1) ( M ,  + 
1 ) p g e ~ " ' ~ .  Thus, if M ,  + M ,  and Q are small, the difference between Q(p,q; t )  
and Q(p ,q ;a ; t )  is very small. Indesd, numerical computations have shown that, 
for any value of t, Q(p,q;m;t )  is only slightly smaller than Q(p ,q ; t ) ,  if M ,  + 
M 2  I 1 anda  5 0.01. 
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TABLE 4 

Probabilities of common existence of a particular allele in two populations 
p is the initial allele frequency in the ancestral population 

- 
p = l  M = l  

M = 0.1 
M = 0.01 

p = 0.5 M = l  
M = 0.1 
M = 0.01 

1.000 0.409 6.7 X I k g  < 10-*6 
1 .WO 0.9M 0.160 2.4 X 10-9 
1 .oo 0.995 0.834 0.137 

0.929 0.113 1.7 X le9 <10-86 
0.947 0.309 0.041) 6.1 X 
0.949 0.335 0.208 0.034 

Table 4 gives the values of Q(p,q;a;t) for the case of N I  = N ,  = N ,  p q,  
and a = 0.01. It is seen that an allele with an initial gene frequency of 0.5 or  
higher may exist in both populations for a very long time. For example, if p = 1 
and M = 0.1, the probability of common existence at the 4ONth generation is 
0.16. Thus, in organisms with N = loG. two related species may possess the com- 
mon allele even 40 million generations after separation. As expected, the prob- 
ability of common existence decreases faster with increasing time when M is 
large and p is small than when M is small and p is large. 

If we use expression (8), the mean time for A to become lost from one or both 
of the two populations can easily be obtained. Let us assume p = q and N l  = N ,  = 
N for simplicity. Then, the probability density, G(p,O;t), that A is lost from one 
or both populations at generation t is  given by 

The nth moment of this probability distribution is 

o o t o  

1=10=1 r z ( M ) i ! j !  ( A % + A ~ )  "+l 
r (j-1 +M)  r (i-1 S M )  (M+2j-l) (M+2i--l) 

=ri!2p2 z ,E (-1)0+3-- xi 

x F(1-j,j+M,M71--p)F(1--i,ifM,M,1--p) . ( 1 3 )  

This formula is subject to the same condition of covergence as that of formula 
(7) .  If p = 1 and M is about 0.1 or less, the first two moments are given by 

E ( t )  = ( M + l ) " ( 2 u ) ,  

E ( t * )  = (M+1)*/(2v2) . 
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Therefore, in this case the mean time for A to be lost from one or  both popula- 
tions is about half the expected extinction time in a single population. 

NUMBER OF COMMON ALLELES SHARED BY TWO POPULATIONS 

Formula (8) gives the probability that a particular allele exists in two 
related populations. Therefore, if there are k alleles in the initial popula- 
tions, the expected number of common alleles that exist at the tth generation is 

given by [l - f (p i ,O; t ) ]  [l -g (q i ,O; t ) ] ,  where pi and qi are the initial fre- 

quencies of the ith allele (Ai) in populations 1 and 2, respectively. In practice, 
however, it is more meaningful to consider the number of common alleles in 
samples of given sizes. Suppose that ml individuals (eml genes) are sampled from 
population 1 and m, individuals are sampled from population 2. The probability 
density that the frequency of Ai in population 1 is x at generation t is given by 

k 

i=1 

w ( M1+2j+l ) r ( M l + j + l )  r (Mi+ j) 
+(pi,.;t> =pi 2 

3 = 0  j!(j+l)  !r2(Ml) 
-~ 

(cf.  CROW and KIMURA 1970; NEI and LI 1975). Thus the probability that Ai 
appears in a sample of 2ml genes, is given by 

where ( a )  = a ( a  + 1) . . . ( a  + 2 - 1 ) .  The probability, Pz(qi,t;2m,), that Ai 
appears in a sample of 2mz genes from population 2 can be computed in the same 
way. Therefore, the expected number of common alleles in the samples is given 

k 
bY 

n ( t )  = 2=1 .E Pl(pi,t;eml)P*(qi,t;emZ) . (16) 

If Nl  = N ,  = 1%’ and the ancestral population was in equilibrium with respect 
to mutation and genetic drift with M = 4Nu, and this equilibrium is maintained 
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in each descendant population, we can obtain an explicit formula for (16 ) .  In  
this case the initial distribution of the number of alleles at different frequencies 
is given by @ ( p )  = Mp-1 ( 1  - p )  H-l ( KIMURA and CROW 1964; see also WRIGHT 
1949). Therefore, 

F (-i,M+i-tl,M,l-p) ( M f 2 j + I ) r ( M + j )  
(i-l-1) !r ( M )  

i-1 

n(t> = oMp( l -p )H- l [  
3 =O 

r(M+j+l)  ( - j )  z(M+j+l) I x { ( -1 ) i  + 
i ! r ( M ) -  ' = O  (M)LZ!(M+2m+Z) 

(i+l) (M+j)  t>,z dp  , 
4N 

X exp{- 

where m1 = mz = m is assumed. 
Some numerical values of n ( t )  obtained by (17)  are given in Table 5. When 

M is large, n( t )  in the early generations is considerably large, as expected. In 
this case, however, n ( t )  decreases rather rapidly as t increases. On the other 
hand, if M is small. n ( t )  in the early generations is small but declines less rapidly 
with increasing t. I n  Table 5 the ratio of the expected number of common alleles 
to the total number of alleles in the two populations is also presented. It is com- 
puted by n ( t ) / [ 2 n u  - n ( t ) ] ,  where nu is the expected number of alleles in a 
sample of 2 m  genes in one population. As expected, this ratio declines with in- 
creasing t but very slowly if M is smau. For example, if M = 0.01, the ratio is 
about 90 percent even at the 4Nth generation. This indicates that the proportion 
of common alleles shared by the two populations remains high for a long time 
after their separation. 

TABLE 5 

Expected numbers of common alleles in samples of m individuals from each 
of populations i and 2 

Time in generations 0.04N 0.4N 4N 40N 4GON 

M = l  m = 20 
m = 50 
m=lOQ 
m = 500 

M=0.1 m=20 
m = 50 
m = l M  
m = 500 

M=0.01 m = 2 0  
m=50 
m = 100 
m = 5 W  

3.25 (0.61) 
3.79(0.58) 
4.05(0.53) 
4.33 (0.41) 

1.34(0.91) 
1.33(0.86) 
1.42 (0.83) 
1.45 (0.72) 

1.03 (0.98) 
1.04(0.98) 
l.olc(0.96) 
l.W(O.95) 

2.01 (0.31) 
2.13 (0.26) 
2.17 (0.23) 
2.21 (0.17) 

1.21 (0.75) 
1.23 (0.69) 

1.23 (0.55) 

1 .CE2(0.36) 
1 .O2(0.94) 
1.02(0.92) 
1.02 (0.9 1 ) 

1.23 (0.64) 

0.26 (0.03) 
0.26 (0.03) 
0.27(0.0%) 
0.27(0.02) 

0.93 (0.49) 
0.93 (0.45) 
0.93 (0.42) 
0.93(0.37) 

0.99(0.91) 
0.99(0.89) 
0.99 (0.88) 
0.99(0.86) 

4 x 10-9 
4 x 1 w  
4 x 10-9 
4 x 10-9 

0.15 (0.06) 
0.15(0.05) 
0.1 5 (0.05) 
0.15 (0.05) 

0.82( 0.65) 
0.82 (0.64.) 
0.82 (0.63) 
0.82(0.62) 

< 1 0 - 8 6  

< 1 or86 

< 1 orss 
< I O - S G  

<IO-9 

<lor9 
<10-9 
<lor9 

0.13(0.07) 
0.13(0.07) 
0.13 (0.07) 
0.13 (0.06) 

The values in parenthess denote the value of r ( t ) .  
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DISCUSSION 

Recent electrophoretic surveys of protein polymorphism have shown that two 
related species often share many common alleles (e.g., SELANDER, HUNT and 
YANG 1969; AYALA et al. 1974). Some investigators interpreted these observa- 
tions as an indication of selective maintenance of the alleles, since they must have 
been maintained in the population for a long time. The present study. however, 
shows that two related species may share common alleles for a long time after 
their separation even if there is no sclection. In Drosophila zuillistoni group spe- 
cies the average heterozygosity ( H )  for protein loci is about 0.16, so that M is 
estimated to be about 0.2 from the formula H = M j ( M  + 1). Under the assump- 
tion of neutral mutations, KIMURA and OHTA (1971) estimated that the mutation 
rate for electrophoretically detectable alleles is roughly I C 7  per locus per year. 
Many Drosophila species seem to have about 10 generations per year. Therefore, 
the mutation rate per generation is estimated to be lo-*. Thus, if the netural 
mutation hypothesis is correct, the effective population size for the long-term 
evolution in Drosophila willistoni group is estimated to be about 5 x lo6 (see NEI, 
MARUYAMA and CHAKRABORTY 1975 for the bottleneck effect). It can be shown 
that r ( t )  is 0.15 for M = 0.2 and t = 4N. Therefore, two species in this Dro- 
sophila group may share an appreciable proportion of common alleles even 
2 x 1 O7 generations (2 million years) after separation. 

In  this connection it should be noted that our theoretical value of r ( t )  is an 
underestimate when applied to electrophoretic data. This is because at the level 
of electrophoretically detectable proteins some back mutation may occur, contrary 
to our assumption of no back mutation. Recently there have been some efforts to 
study protein polymorphism in detail by using heat denaturation and other tech- 
niques (BERNSTEIN. THROCKMORTON and HUBBY 1973; SINGH, HUBBY and 
THRCCKMORTON 1975). Our computation would apply more appropriately to 
data obtained by these techniques or by amino acid sequencing. 

In  a recent paper COYNE (1976) showed that at the xanthine dehydrogenase 
locus the proportion of alleles in common between Drosophila pseudoobsczrra and 
D.  persimilis was 3/11 = 0.273 when the ordinary electrophoresis was used, 
whereas it was 3/47 = 0.064 when a more detailed study was made by using 
different gel concentrations and pH values (four levels of screening). It is inter- 
esting to note that the latter value is not far from what we expect under the neu- 
tral mutation theory if the time after divergence between these two species is of 
the order of 1.5N generations (see NEI and LI (1975) for the discussion of the 
divergence time between these! two species). Namely, the M value for this locus 
when the four levels of screening were used seems to be about 2. since the aver- 
age heterozygosity for the two species has been estimated to be 0.66. (The Dro- 
sophila xanthine dehydrogenase is an unusually large protein.) In the caseof M = 
2 and m = 30 (60 homozygous lines) we obtain r ( t )  = 0.045 for t = 1.5N, using 
formula (1 7). This is close to the observed value. Of course, data from a single 
locus are not very reliable for this type of argument, since the proportion of com- 
mon alleles is expected to have a large sampling variance. 

Our results on the extinction probability and mean extinction time of an allele 
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in a single population have a direct bearing on the problem of degeneration of 
unused characters in evolution. It is well known that many cave-dwelling ani- 
mals lack pigmentation and eyesight. It has been controversial, however, whether 
these characters degenerated simply because of mutation pressure or  because the 
individuals lacking these characters had a selective advantage in cave conditions 
(WRIGHT 1964; BARR 1968). If we know the time when a cave population was 
formed, this problem can be studied by using our mathematical formulae. For 
example, using AVISE and SELANDER'S (1972) data on protein polymorphism, 
CHAKRABORTY and NEI (1974) estimated that the cave populatian of the characicl 
fish Astyanax mexicanus in Pachon, Mexico, was formed about 710,000 
460,000 years ago. If we assume that the generation time of this fish is 5 years 
(P. SADOGLU, personal communication), this evolutionary time corresponds to 
about 140,000 generations. On the other hand, ir" the rate of mutations to lethal 
or other nonfunctional alleles is IO+ pm locus per generation, the mean time for 
the original allele to become lost from the populaiion is about 100.000 generations, 
since the effective size of this population is very small (less than 200). Therefore, 
it is possible to explain the degeneration of eyes and pigmentation in this cave 
fish in terms of mutation pressure without assuming any selective advantage. 

In  the past the process of degeneration of unused characters has been studied 
mainly by using deterministic models. However, since population size is gener- 
ally small when this type of evolutionary changz occurs, stochastic models are 
much more appropriate. In  the absence of selection the probability that the orig- 
inal allele becomes lost from Ihe population by generation t is given by (6).  
When p 2 0.4 and M < < 1, this formula reduces to 

approximately (see also CROW and KIMURA 1970). In the above example of 
Astyanax mex,'canus this probability becomes 0.75 if we assume U = 10-j. p = 1, 
and t = 140,000. Thus, the probability of loss of gene function is very high. On 
the other hand, if t is 14,000, the probability becomes 0.13. This indicates that 
even in such a short evolutionary time as 14,000 generations the loss of eyes and 
pigmentation may occur with an appreciable probability. 
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