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ABSTRACT 

An inbreeding matrix is defined for populations with overlapping gen- 
erations. In the short term it can be expressed in terms of a matrix specifying 
the passage of genes between the different age groups (and sexes) and a di- 
agmal matrix whose elements depend on the number of individuals in each 
age group. Formulae for the inbreeding effective number are derived using 
matrix theory. A comparison is made between the inbreeding coefficients 
predicted by this theory and those obtained by assuming a uniform rate of 
inbreeding from the outset, and these in turn are csmpared with the exact 
inbreeding coefficients. 

HE  concept of effective population number was introduced by WRIGHT (1931, 
1938) and is useful for predicting inbreeding or random genetic drift. For a 

population in which the generations overlap, the effective population number N e  
has been determined, for specific models, under the assumption that the popula- 
tion has reached the equilibrium state (see HILL 1972). In  particular, FELSEN- 
STEIN (1971) considered monecious populations with age-specific birth and death 
rates and obtained formulas for the inbreeding and variance effective numbers. 

In  a population with discrete generations, the rate of inbreeding per generation 
is given approximately by 1/2Ne. With overlapping generations, this rate of 
inbreeding is attained only in the later generations. The purpose of this study is 
to determine the pattern of inbreeding over an initial period of time in a newly 
established population and to check the usefulness of the assumption of a uniform 
rate of inbreeding from the outset. This is of interest for animal breeding work 
where one is usually concerned with the early linear phase of increase in the 
inbreeding coefficient. 

We first consider a finite random-mating population of monecious diploids of 
constant size and age distribution. We assume that deaths occur at random and 
there is a random distribution of family size from surviving parents. FELSENSTEIN 
(1971) derived the inbreeding effective number for this model by considering 
rates of change of probabilities of identity by descent. We define a matrix Ft 
giving probabilities of identity of two randomly chosen genes from the various 
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age groups at time t, and show that if second-order terms are ignored, we have 
approximately 

F t + 1 -  - P  Ft P’ + D 

where P is a matrix specifying the passage of genes between the different age 
groups and D is a diagonal matrix whose elements depend on the number of 
individuals in each age group. Using properties of the stochastic matrix P, FEL- 
SENSTEIN’S formula for the effective number is obtained. We then extend these 
results to the case of sepsrate sexes. The matrix P is more general in this case, 
in that it is cornposed cf blocks representing the four pathways of genes from 
male and female parents to male and female progeny. We also note that under 
our assumption of random births and deaths, the formula for the effective num- 
ber quoted by HILL (1972) reduces to that obtained in this paper. 

From this theory we show that, in the short term. the difference between the 
inbreeding coefficient and the uniform prediction reaches a constant value. 
Finally, we illustrate these results with an example of a farm livestock species. 

PROBABILITIES O F  IDENTITY BY DESCENT 

Consider a population of monecious diploids with n age classes and a constant 
age distribution such that N ,  individuals enter the population each specified 
period of time. We let N ,  denote the number of individuals of age i (1 5 i I n)  
so that the probability of survival to age i is NI,”,. We assume that the N ,  values 
are reasonably large so that both births and deaths may be considered as inde- 
pendent random events. 

Let pl  be the probability that a gene in a newborn individual came from a 
parent of age i. We define a matrix P of the type discussed by LESLIE (1945) by 

1 

Lo 0 0 . .  . .  1 0 1  
That is. the first row of P consists of the pl,p2, . .p,, all the sub-diagonal elements 
are equal to unity and all other elements are zero. The stochastic matrix P has a 
single eigenvalue of unity and all others are of smaller absolute value. The vector 
1 (with all elements equal to unity) is a right eigenvector for P. We set 

qa=pL+pi+l  + . . . + p  n l l i 5 n  

then the generation interval L is given by 

n n 
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The row vector q' is a left eigenvector for P with corresponding eigenvalue of 
unity. Using the theory of stochastic matrices (see, e.g., KEMENY and SNELL 
1960), it follows that the matrix A where 

A = lim P t  
t-* m 

is given by 
A = 1 q'/L . 

We now consider probabilities of identity by descent. At a particular locus 
there are 2Ni genes among individuals of ase i. Let f i j  ( t )  be the probability that 
a gene chosen at random from among individuals of age i is identical by descent 
to a gene chosen at random from among individuals of age j at time t. We assume 
in the case i=j that the genes are sampled with replacement from the gene pool 
of size 2N,. Let Ft be the symmetric matrix of order n with f ,3  ( t )  in the (i, j) 
position. The following argument is similar to that of FELSENSTEIN (1971), 
although he considered probabilities of non-identity by descent. 

We express the probabilities of identity by descent at time t+1 in terms of the 
probabilities at time t. If i=j there is a probability of 1-1/2Ni of choosing two 
distinct genes from individuals of age i with further probabilities of p,. and ps 
that these genes were descended from parents of ages I and s respectively at time 
t-i+l, and a probability of 1/2Nz that the same gene is sampled twice. 
Thus 

From (1) we then get 

and 

If we assume Ni large enough for 

then equations (2) and ( 3 )  reduce to 

I < i < n  (4) 

n 

f i i ( t+l)  = p r f i - i , r ( t )  

f i j ( t+ l )  =fi-l,j-l(t) * 

5-=1 

and finally if i ,j>l, i#j, then 
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Define the diagonal matrix D by setting 
D,, = 1/2N, 
D,; E 1/2N, - 1/2N,-1 
D. .=O 23 i#j . 

l < i < n  

Then equations (5) may be written in matrix form as 

where Fo is the diagonal matrix obtained by assuming that individuals in the 
population at time 0 are unrelated, that is, 

Ft+l= P Ft P’ + D t 2 0  (6) 

fil(0) = 1/2Ni l i i < n  
f2,(0> = 0 i#i . 

From (6)  it iollows that 

Ft = Pt F, P’t 4- Pi D P’% t 2 l .  (7) 
,=0 

We recall the approximations (4) used to obtain the recurrence relation (6). 
This is equivalent to ignoring terms of order 1/N: and it is therefore important 
to note that this assumption limits the application of equation ( 7 )  to values of t 
such that t /Ni  is small. From (7) we get 

Ft - Ft-1 = Pt F, Prt - Pt-’ Fo I?’’-’ + D Plt-l t< <Ni . 
Since A is the matrix lim Pt it follows that for fairly large t ,  but still satisfying 

t-+ m 
t<<N,, 

Ft - Ft-1 A D A’ . 
With random mating the inbreeding coefficient f ( t )  for progeny born at time t 
is given by 

f ( t >  = p’ Ft-1 p 
where p’ is the first row of the matrix P. Thus 

and so for  t sufficiently large we obtain 

Thus during the early linear phase of increase of the inbreeding coefficient, its 
increment per generation reaches a value of 1/2N, where Ne,  the effective popu- 
lation size, is given by 

f ( t+l )  - f ( t )  =p’ (Ft -Ft-i)p 

f ( t + l )  - f ( t )  z p ’ A D A ’ p =  (qJDq)/L2 t < < N ,  . 

as obtained by FELSENSTEIN (1971). 

SEPARATE SEXES 

We consider the same conditions as before but with separate sexes. We assume 
M ,  males and F ,  females enter the population each unit of time and that males 
and females are retained in the population for h and k mating seasons respec- 
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tively. The number of males of age i is M ,  (1 I i I h )  and the number of females 
of age j i s  F j  (1 I j i k ) .  

Let p l i  ( 1  I i i h )  and pl ,JL+I ( 1  I j i k )  be the expected proportion of genes 
in male progeny which are derived from sires of age i and dams of age j respec- 
tively. Similarly p h + l , i  and p k + l , k + j  are the expected proportions of genes in 
female progeny derived from the various parental age groups. Following HILL 
( 1974), we define a more general matrix P of order h+k by 

P =  
0 0 . . . .  1 0 

o h + l , l  ph+l,Z * . . p ; i  + 1J-1 p h  + 1 , h  

0 0 . . . .  0 0 

0 0 . . . .  0 0 

The blocks of P correspond to the alternative pathways of genes between the 
different age groups and sexes, that is 

I .  II- females from males 1 females from females 
males from females __ males from males 

All the sub-diagonal elements of P are equal to unity and represent the passage 
of genes due to ageing, the elements in the first row of each block represent the 
passage of genes due to reproduction. All other elements of P are equal to zero. 
Clearly 

i=l,h+l 1 
2 

h k 

3=1 3=1 
2 p i j  = x P i , h + j  = - 

so all rows of P sum to unity. For r = l ~ h f l  we define the quantities , 

\ 
and let q be the vector with elements 

q.1 = ql% f q h + i , z  1 I i S h f k .  
h k 

C = l  1 =I 
Let Lm, 22 ;PI$ and Lfm 22 j p l , h + j  be the average ages of sires and 
Jams respectively of newborn males. Similarly define Lntf and Lf f  for newborn 
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females (see Table 1). Then L, the generation interval, is the average age of 
parents along the four pathways of gametes and is given by 

1 L = (L,,, + Lfm + Lnai + Lif )  

“ q 2  
1 h+k  - _ _  
2 2 = 1  

The matrix P is stochastic and has a single eigenvalue of unity with all others 
of smaller absolute value. The vector 1 is a right eigenvector for P and cf is a 
left eigenvector, corresponding to the eigenvalue of unity. The matrix A where 

is given by 
A = lim Pt 

A = 1 $ / 2 L .  

t-+ m 

I n  the following, an “individual of age i” will refer to a male of age i if 
1 5 i I h or a female of age i-h if h+l 5 i I h+k. The f 2 j  ( t )  values are 
defined as in the previous section, and Ft is the corresponding symmetric matrix 
of order h+k. Suppose we select two genes at random from among males of age i 
at time t+l .  There is a probability of 1/Mi that the two genes are chosen from 
the same individual with an equal chance that the same gene is sampled twice, 
or that both the sire gene and dam gene of that individual have been sampled. 
In the latter case the genes are derived from a sire of age r and a dam of age s 
at time t--i+l with probability 4 p1Tpl,h+S and so are identical with probability 

42 p1Tpl,h+sfT,h+S(t-i+l), (we extend the definition of Ft  so that F t  = o  
when K O ) .  On the other hand, the two genes are sampled from different indi- 
viduals with probability l-l/Mi, with further probabilities of plT and pls  that 
these two genes are derived from individuals of ages r and s respectively at 
time t-i+l. 
Thus 

h k  

T = l  S=1 

h k  1 
2M,  

f%i( t+ l )  =- [I + 42 1 1 1  s=1 2 plTpl,h+sfr,h+s(t-i+l)] 

We also have 
h + k  

f i l( t+l)  = T = l  z plrfi-l ,c(t)  l < i < h  (ab) 
with a similar set of equations for females. 
If we select two genes from a male of age 1 and a female of age 1 then there are 
probabilities pl,, and ph+l,s that the genes were derived from individuals of ages 
r and s respectively. Thus 

and similarly 
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Finally 

1 < i s h .  (8e) 

iZj ( 8 0  
i,j#l,h+l . 

Define the diagonal matrix D of order h+k by setting 
Dii = 1/2M, 
Di i zz 1/2Mi - 1/2Mi-1 l < i i h  
D h + l , h + l -  - 1/2F1 

Di j = O  i#j  . 
Then, ignoring terms o,f order l/MY and l/F,”, equations (8) may be written in 
the form 

D h + j , h + j  = 1/2Fj - 1/2Fj-1 l < j i k  

Ft+l= P Ft pi‘ + D t 2 0  (9) 
where F, is the diagonal matrix with elements 

f i i  (0) = 1/2M4 l 5 i 5 h  
f h + i , h + i  (0) = l/2Fj l 5 j 5 k  
fij(0) = 0 i#j . 

Using the same reasoning as in the last section, it follows that for moderately 
large values o f t  satisfying t<<M6,Fj we have 

1 
Ft-Ft-l--”ADA’=- ($Dq) 11’ . 4L2 

Thus, during the early linear phase of increase in inbreeding, the increment per 
generation reaches the value of 1/2Ne where Ne,  the effective population size, 
is given by 

Under more general conditions the effective size of a random mating popula- 
tion, with constant age distribution and with M, males and F,  females entering 
the population each time period, is given by 

(11) 
1 

16F1L +- C2 + u2rr + (FJMi)2ugm + 2(F;/Mi)cov(fm,ff)] 

where the variances of lifetime family size are defined in Table 1 and cov 
(mm,mf) and cov(fm,ff) are the covariances between the lifetime number of 
male and female progeny from male and female parents respectively. Formula 
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TABLE 1 

Means and variances of lifetime family size and mean age of parents 

Family size Mean age 
Pathway for gametes Mean Variance of parents 

Male parents having male progeny 1 U27nm Lmm 
Male parents having female progeny F J M l  U2mf Lmf 
Female parents having male progeny M J F l  U2fm. L f m  
Female parents having female progeny 1 U2f f L f f 

(1 1 ) is based o n  a derivation by LATTER (1959) , for discrete generation models, 
and a generalization to the overlapping case by HILL (1972). Under the assump- 
tion of random births and deaths one can express the above variances and 
covariances in terms of the quantities qri and the M i  and Fj. We  get 

and similarly for female parents. Substituting in (11) and recalling that 
qi = q,; + q h + l , i  we obtain (10). 

The inbreeding coefficient fm (t) for male progeny born at time t is defined in 
terms of the probability of identity of two genes, one from a male and the other 
from a female, chosen at time t-1. The probability that a male born at time t 
has a sire of age i and a dam of age i is 4plipl,h+j and so 

h. k 

with a similar definition for female progeny. 
If we define vectors pmm and pfm of length h+k by 

P’mm =z (pll,p127 . . . 7 plh? 0, 0,  . a . 0 )  
p’fm = (0 7 0  9 . . 7 0 7 pi,h+i, p l , h + z ,  . . . 7 p 1 , h f l r )  

then we may write 

We  have shown that for moderate values of t these inbreeding coefficients attain 
a rate of increase of 1/2N, per generation. Assuming a uniform rate of inbreeding 
from the outset, the inbreeding coefficient for both males and females born at 
time t would be (t-1)/(2NCL). Thus, the difference between fnL(t)  and this 
estimate is given by 

f m  ( t )  4p’mm Ft-I p f m  . 
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TABLE 2 

Age distribution of females in the sheep population 

589 

Age of ewe ( i )  Bf Lambing % PLZtj = p3,2+5 
1 64 0 0.000 
2 58 80 0.112 
3 52 100 0.126 
4 47 120 0.137 
5 43 120 0.125 

In the APPENDIX we show that the matrix Ft - t A D A'is approximately constant 
for moderately large values of t ,  and so in the short term the difference between 
fm( t )  and (t-1)/2NeL reaches a constant value. 

EXAMPLE 

We consider a sheep breeding program in which 20 rams are mated to a flock 
of 200 mixed-age ewes each year. Both rams and ewes have their first progeny 
at 2 years of age, but the rams are used only once, while the ewes are retained 
for 4 breeding seasons. Male and female replacements are chosen at random from 
the lamb drop each year. 

We take M ,  = 22 so that a 10% death rate for both sexes and all ages will 
result in M, = 20. Since rams have no progeny at 1 year of age, we have 
pll = p31= 0 and plz = p S 2  = l/2. The age structure for females is given in Table 2. 
In Table 3 we present the inbreeding coefficient f m ( t )  = 4p',, F,-lpjm where Ft-l 
is calculated using the recurrence relation (9), for the first 12 years of the breed- 
ing program. As a comparison, the matrix Ft-l is calculated using the exact 
equations (8) and the corresponding exact inbreeding coefficient is presented. 

TABLE 3 

Inbreeding coefficients for the sheep population 

t-1 

i 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Using exact 
equations (8) 

0.000 
0.0000 
0.0021 
0.0022 
0.0039 
0.0043 
0.0054 
0.0060 
0.0070 
0.0080 
0.0000 
0.0100 

Using recurrence 
relation (9) 2",1 

0.00010 
0.0000 
0.0021 
0.0022 
0.004.2 
0.0048 
0.0061 
0.0071 
0.0083 
0.0094 
0.0105 
0.0116 

o.oaoo 
0.00 11 
0.0m2 
0.0034 
0 . W 5  
0.0056 
0.0067 
0.0079 
0.0090 
0.0101 
0.01112 
0.0123 
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The inbreeding coefficient calculated using recurrence relation (9) overestimates 
the exact value by approximately 16% after 12 years. These values are com- 
pared with the uniform inbreeding coefficient (t-1) /2NeL, and this value over- 
estimates the exact value by 23% after 12 years. 
The effective population size is Ne = 164 and the generation interval L = 2.775. 
The difference between f m ( t )  and (t-1)/2NeL reaches a constant value of 
0.0007. 

DISCUSSION 

In  a population with discrete generations, inbreeding at any time can be 
described by a scalar quantity. With overlapping generations, a matrix formu- 
lation is necessary in order to describe the probability of identity of two genes 
chosen from the various age groups. A uniform rate of inbreeding of 1/2Ne per 
generation is attained only in the later stages of the early linear phase of increase 
of the inbreeding coefficient in a population with overlapping generations. 

In  the sheep example, computation of the short-term inbreeding using the 
inbreeding matrix Ft shows that initially the inbreeding coefficient differs con- 
siderably from that predicted by assuming a uniform rate of inbreeding from 
the outset, but that the difference between these two estimates settles down to a 
constant difference after about 9 years. These results are analogous to those of 
HILL (1974), who developed a theory for  predicting the short-term response to 
selection in populations with overlapping generations, and this was compared 
with the classical theory of uniform rates of response. 

Although in  the short term the inbreeding calculated using the recurrence 
relation (9) is a fairly good approximation to the exact value, in  practice it would 
seem preferable to compute the exact value, since there is very little extra effort 
in computation involved. 

We emphasize some of the assumptions made in this paper. The recurrence 
relations (9) for the inbreeding matrix ignore second order terms. The popu- 
lation size is constant, as well as the parental age distribution. It is also assumed 
that deaths occur at random and that the distribution of family size from surviv- 
ing parents is random at any one time period. 

In another paper (JOHNSON 1976), a theory for  predicting genetic drift in 
populations with overlapping generations has been developed. Formulae are 
given for the variance-covariance structure of group means in successive years 
of a selection program. 
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APPENDIX 

We consider the asymptotic behavior of the matrix F, - t A D A’. Following 
HILL (1974) we define a matrix B by setting 

B = P - A .  

Then A B = B A = 0 which implies that Pt = A 3- Bt for t > l ,  and hence 
lim Bt = 0. From (6) or (9) we have 
t-, m 

F~ = ~t F, p r t  + :: pi D ~ ’ i  
2=0 

= Pt F, Pit + t; (A + Bi) D (A’ + B’$) 4- D 
2=1 

= P t F , P f t +  (t-1) ADA’+ ?(BiDA’+ADB’i )  + ? B i D B t i  . 
i=1 i=0 

Now 
t-1 

i=0 
2 B i z  ( I -  Bt)  (I - B)-’ 

where I is the identity matrix, Hence we get 

Ft - t A D A’ = Pt F, P’t - A D A’ + [ (I - Bt)  (I - B)-l-  I] D A’ 
t-1 + A D  [(I - B’t) (I - B’)-’- I] + ,E Bi D B’i . 

2 x 0  

Thus for moderately large values of t we get approximately 

Ft - t A D A/ A(F0 - D)A“ + [ (I  - B)-l-  I] D A’ 

+ A D  [(I-BB”)-l-1] 4- .; BiDBt i  
t=O 

the last term representing the sum of a convergent series. The matrix expression 
on the right hand side is constant. 


