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ABSTRACT 

The classical mathematical theory of population genetics considered, for 
simplicity, almost exclusively one-locus systems. In the last two decades much 
work has been done on two-locus and, less frequently, multi-locus systems. 
This research has usually involved investigating properties of systems with 
given, and usually rather special, fitness parameters. Real genetic fitness sys- 
tems are undoubtedly multi-locus and seldom will possess simplifying char- 
acteristics. One aim of this paper is to study generalized systems where no 
special assumptions are made about fitness structure, the number of alleles a t  
each locus, the number of loci involved or the recombination structure between 
loci. A second aim is to consider marginal properties (often one-locus prop- 
erties) of complex systems: the fact that many observations involve data from 
only one locus makes this second aim relevant. 

HE classical mathematical theory of population genetics considers largely 
Tone-locus systems where fixed fitnesses are assigned to various one-locus 
genotypes. This is at best an approximation: the fitness of a genotype at one locus 
will almost always depend on the genetic constitution of the remainder of the 
genome (as well as, no doubt, on the particular environment that the individual 
is placed in). Leaving aside the environmental question, real fitness schemes are 
multi-locus, and furthermore no practical assessment can usually be made of the 
number of loci involved. 

An aim here is to open up a line of research that assumes as its starting point 
that fitnesses depend on an unknown (and possibly large) number of loci with 
an unknown number of alleles at each locus, unknown recombination structure 
between loci and unknown genotypic fitness values. We assume only fixed fit- 
nesses (although for  many of our conclusions fitnesses can be frequency- 
dependent), random mating and that the population size is so large that all 
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processes can be treated as deterministic. In this way we hope to approach more 
realistically the effects of fitness differentials in actual populations. 

A second aim also has a practical motivation. Many experiments or observa- 
tions involve data from a very small number of loci (often only one), and we 
thus consider the marginal properties of a k-locus system when only Z loci 
(I < k )  are considered. This will involve the definition of marginal or induced 
Z-locus fitness values as appropriately weighted averages of fitnesses in the full 
k-locus system. These induced marginal fitnesses change from generation to 
generation until equilibrium is reached, but are nevertheless, in any generation, 
the values which will be calculated by the experimenter from his observation 
of the Z-locus subsystem. One of our results is to show that for any general k-locus 
system all “lower order” marginal systems (i.e.,  involving 1,2,3, . . . , k-2 or k-I 
loci) satisfy the appropriate lower-order set of recurrence relations with these 
marginal fitnesses used in the standard equations. One consequence of this is that 
if the k-locus system is in equilibrium, then all marginal Z-locus systems must 
exhibit equilibrium behavior, and in particular, all gene frequencies must be 
equal to the values predicted from marginal gene fitnesces. 

We also discuss the question of stability of equilibria. I t  is easy to construct 
examples where a k-locus system is at a stable equilibrium, and each Z-locus 
marginal subsystem is also at a stable equilibrium for its induced marginal fit- 
nesses. The same is true for unstable k- and Z-locus systems. We give an example 
of a k-locus system at an unstable equilibrium point for which all Z(Z < k )  sub- 
systems satisfy the stability criteria for their subsystems. We do not know if a 
k-locus system at a stable equilibrium can have Z-locus subsystems at apparently 
unstable equilibria. For k = 2, the many simulations of KARLIN and CARMELLI 
(1975) suggest that this is unlikely, and KARLIN (1975), in a paper that is the 
main stimulus for this research, claims that it is impossible for a sufficiently 
small recombination fraction between the loci. For larger values of k,  the question 
is still quite open. This question is of practical interest since at least two reported 
cases (LEWONTIN and WHITE 1960; CHRISTIANSEN et al. 1974) show systems 
at apparently unstable equilibrium points of (respectively) two- and one-locus 
systems. It is still an open question as to whether these could be the result of a 
system at a stable equilibrium for a three (or more) locus fitness system. 

Finally, we pay some attention to a quantity of fundamental importance 
in theoretical population genetics, namely the additive genetic variance in fit- 
ness. (Note that since fitness is the only characteristic we are interested in, the 
words “in fitness” will be dropped below). We show that the additive genetic 
variance is always equal to a second important quantity, namely the additive 
gametic variance. The classical one-locus result that a system has zero additive 
genetic variance if and only if it is at equilibrium is shown to be no longer true 
for many loci, although a restricted version of this conclusion will be proved. 
Relations between the k-locus additive genetic variance and the induced Z-locus 
additive genetic variances will also be considered. 
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ONE-LOCUS SYSTEMS 

We begin by discussing in more quantitative fashion some of the problems 
raised in the Introduction. 

The simplest classical theory of population genetics considers a locus “A” at 
which occur genotypes AIAl, AIAz and A,A2, with fitnesses wll, wlz and w22. 
We defer for the moment the meaning of the word fitness in this context. Then, 
under certain assumptions the irequencies of these genotypes at the time of 
zygote formation are in Hardy-Weinberg form x2, 2x( 1-x) , (1-x) (where x 
is the frequency of A,)  and in the simplest discrete time model a recurrence 
relation of the form 

x’= (w11x2 + w12x(1-x))/(w11xz + 2w1,x(l--Z) + wzz(l-x)2) ( 1 )  

is found. It is a simple consequence of this relation that the frequency of A ,  is 
at an equilibrium if 

x=x*- - (w1z - WZP)/(2W12 - w11- w22) * (2) 

WlZ w11 , wz2 ( 3 )  

WlZ w11 , w 2 2  . (4) 

The equilibrium (2) is stable if and only if ( 3 )  obtains. 
There is one potential problem with these arguments. Equations ( 1  ) through 

(4) are arrived at under the assumption that the fitnesses wij are fixed constants, 
while on the other hand it is accepted that such single-locus fitnesses cannot be 
fixed constants and will depend at the very least on the genetic constitution of 
each individual at the remaining loci. But if this is so, the recurrence relations 
connecting genome genotypic frequencies between consecutive generations will 
be very complex, and it is not immediately clear that they will imply the truth 
of equations (1) through (4) when the w,j are defined by some suitable aver- 
aging procedure. We shall indeed see later, for example, that genome genotypic 
frequencies can be at an unstable equilibrium point even though ( 3 )  obtains for 
all marginal fitness values. T o  discuss such problems in more detail we must turn 
to an examination of the complex genotypic recurrence relations arising when 
fitness depends on an arbitrarily large number of loci. 

The point (2) will bc allowable (i.e., 0 < x* Q 1) if and only if 

or 

THE k-LOCUS SYSTEM 

We consider a k-locus genetic system with an arbitrary number of alleles pos- 
sible at each locus, arbitrary recombination structure and arbitrary (fixed) 
fitnesses for the various possible genotypes. Random mating is assumed. It  is a 
standard result of population genetics theory that the evolution of such a k-locus 
system must be described by considering the frequencies of the various k-locus 
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gametes possible in the system. We suppose that these gametes are arranged in 
some dictionary order and denote their frequencies x1,x2, . . . . Let the fitness of 
the genotype defined by gametes i and j be w , ~ .  (We reserve the symbols i, j and 
h to denote arbitrary k-locus gametes). The marginal fitness w1 of gamete i is 
defined, according to standard przctice. as 

w L = x x j  WI, 7 ( 6 )  

and the mean fitness W is defined by 

G = x z XL xj w,, . (6) 

Then trivially 

E x ,  (Wl - E )  = o  , 

E * X ,  (w, - E )  = o  , 

(7) 

(8) 

and EWENS (1976) has shown that, at any equilibrium point of the system, 

where ‘* refers to summation restricted to those gametes containing any  arbi- 
trary but specified allele a t  any arbitrary but specified locus. 

One of our interests in this paper concerns various components of the total 
variance in fitness 

z 2 X J j  (WL, - G)Z = z x x,xIw~zj - E’ . (9) 
2 1  2 1  

Becauce of the role played by the gamete frequencies in describing the evolution 
of the k-locus genetic system, it is natural to consider the component of this 
variance that measures the extent to which ihe marginal fitaesses of the rarious 
gametes differ from each other. This is the “total” gametic variance, defined as 
2xx, (w, - E)?.  This variance does not, however. have particular evolutionary 
importance. To find a variance which does. we must partition the “total” gametic 
variance into two components. the so-called “additive” and “non-additive” com- 
ponents. W e  do this as follows. Suppose all the alleles at all the k loci are nritten 
down in some dictionary order A,,A, .  . . . ,AT and let y t  be the frequency of the 
tth of these alleles. (Note that y t  = k). Attach additive parameters C Y ~ , N _ . ,  . . . .aI’ 
to the alleles, where the a’s are constrained by the requirement 

- y t a t = O  -s , (10) 

the summation being true over all alleles at any one of the k loci (SO that ( lo )  
implies k separate equations). Subject to this constraint, we attempt to minimize 
(with respect to a1,a2, . . . ,a,) the expression 

2 z x , ( w , - ~ - z c C , t a t ) 2  1 , (11) 

where c t t  = 1 if the ith gamete contains the allele A t .  but is zero othervise. It is 
not difficult to see that the minimizing values satisfy the equations 

x( t )  XI (w, - E )  = yt & + z yt*, , (12) 
U # t  
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where B ( ~ )  implies summation over all those gametes containing the allele At 
and, for any two alleles At and A ,  at different loci, y tu  is the total frequency of 
those gametes containing both At  and A,. Furthermore, least squares theory 
shows that the additive gametic variance in fitness (AGV) , namely the compo- 
nent of the total gametic variance removed by fitting the parameters al, . . . ,aT, is 

Of more classical interest is the so-called “additive genetic variance”, defined 
in the following way. Subject to the constraints (IO) we attempt to minimize 
the expression 

(14) r, 7 xixj {Wi j  - E - xt at T Z t ( i j ) } 2  , 
a ?  

where n t ( i j )  is the number of times (0,l or 2) that allele A ,  appears in the 
genotype defined by gametes i and i. ‘Appropriate differentiation in (14) leads 
to the equations 

Z * ( f ) n t ( i j )  xixj ( ~ i j  - E )  = &E*(‘) xi~j (nt(;i))2 

+ B ~ * ( ~ l ~ )  xixj nt(ij)nu(ij) & , (15) 
t = 1 , 2 ,  ... T ,  

where 2*( t )  implies summation over all those genotypes ( i j )  containing the 
allele A t  and implies summation over all those genotypes (ii) containing 
both alleles At and A,. It  is easy enough to see that the left-hand side in (15) 
reduces to twice the left-hand side in (12), while the right-hand side is just 

at c4y: + 2yt (1-rt)l + 2ytz(l) 

= 2 y t & f 2 X ( 2 )  &ytu) , 

yu 
+ 2 E@) (ytu + yt t u )  

where implies summation over all alleles A ,  ( u i t )  at the same locus as A t ,  
and I;(*) implies summation over all alleles A ,  at a different locus than A, .  It 
follows that equations ( l e )  and (15) are identical and from this that the sum 
of squares removed in (14) is identical to that removed in (1 1) .  In  other words 
we have reached: 

RESULT 1.  The additive genetic variance in fitness for a general k-locus 
system is equal to the additive gametic variance in fitness. 

This conclusion was found by KIMURA (1965) for  two loci and two alleles and 
by NAGYLAKI (1976) for two loci with an arbitrary number of alleles. Clearly 
the result is true for any character, not only fitness. 

We consider below various properties of the AGV and the conclusion just 
reached shows that identical properties will hold for the additive genetic variance. 
Note also that the conclusion of EWENS (1976) that the AGV is zero at any equi- 
librium point of the k-locus system immediately implies a parallel property for 
the additive genetic variance. 
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We next ask a converse question, namely, what equilibrium properties obtain 
if the equation 

AGV = 0 (16) 
is true? The truth of (1 6) implies the tntth of (8), but this does not necessarily 
imply that the system is at an equilibrium. A genetic system can have curves 
or even surfaces in gamete frequency space on which (16) is true, with only one 
point on the curve (or surface) being an equilibrium poigt. An example is given 
by the trajectory computed by MORAN (1964): at all points on this trajectory 
equation (16) holds, and yet only one point on it is an equilibrium point. 
Although this example refers to un unlikely biological circumstance, it is suffi- 
cient to illustrate: 

RESULT 2. While equation (26) does not necessarily imply that the k-locus 
genetic system is at an equilibrium, it does nevertheless imply that, at least for 
one generation, there will be no change in allelic frequencies. 

The proof of this statement follows immediately from the fact that (16) 
implies (8) , which implies the statement made. 

The above conclusions are intended mainly as background for the main aim 
of this paper, to which we now turn, namely to discuss the properties of any 
Z-locus (I < k) marginal subsystem of the system under consideration and to 
ask, in particular, what properties of this subsystem can be deduced from those 
of the full k-locus system, what properties of the k-locus system can be deduced 
from those of Z-locus subsystems, and what properties of an 1-locus subsystem 
can be found from those of the subsystem itself. 

I-LOCUS SUBSYSTEMS 

Consider any 1-locus subset of the k-locus system, ( I  < k). These 1 loci will 
define 1-locus gametes whose frequencies we denote z,,zz, . . . ,zR. If S, is the 
collection of k-locus gametes having the same alleles as the pth of these gametes 
at the 1 loci under consideration, then 

We use suffixes p, q and r throughout to denote l-locus gametes and gametic 
frequencies. 

Now consider the 1-locus genotype formed by the pth and qth 1-locus gametes. 
Following KARLIN (1975) we would define the induced marginal fitness zijpq of 
this genotype (we use the bar notation throughout to denote induced 1-locus 
fitnesses) as the fitness obtained by averaging over all genotypic combinations 
at the remaining k-1 loci, appropriately weighted by their frequencies and fit- 
nesses. It is thus the average fitness of all k-locus genotypes exhibiting the 1-locus 
genotype of interest, and so 
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KARLIN (1975, equation 2.4) gives examples of such induced fitnesses for k = 2, 
Z = 1. The induced marginal fitness W p  of the pth Z-locus gamete is defined in a 
manner identical to that of equation ( 5 )  by 

W P = z E p q z q ,  
Q 

and from (18) this becomes 

since for any function di, 

Equations (20) and (21) now show that 

Z z p  i i j p  = k x i  xj wij iij (23) 
3 %  

so that the induced gametic fitnesses El, . . . , ER obey an equation parallel to (2). 
We note also that since 

(24) - - 7 xi Xj wij 

= w ,  

% 9  

- 

the mean fitness, as computed from marginal Z-locus gamete frequencies and 
fitnesses, is identical to the true k-locus mean fitness. I t  is well known that in a 
k-locus system ( k  2 2), decreases in mean fitness can occur, whereas the funda- 
mental theorem of natural selection shows that under the assumptions we make 
this is impossible for a genuine one-locus system. On the other hand, equation 
(24) shows that the apparent one-locus mean fitness in a k-locus system, being 
identical to the k-locus mean fitness, can decrease. This can happen even when 
gene frequencies at this locus are constant.. There is of course no anomaly 
between these two facts, since in the k-locus case the induced one-locus fitnesses 
are not constant, but normally change with changing k-locus gametic frequencies. 

We now wish to establish what 1-locus analogues exist for certain k-locus 
results noted above. We first prove: 

RESULT 3. The marginal l-locus AGV is zero at any equilibrium point of 

From the discussion centering around equations (8) and (16) it is sufficient 
the k-locus system. 

to prove that, at an equilibrium of the k-locus system, 

z * z p  (E jP-W)  = o  , (25) 
P 
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where the summation Z*  is over all Z-locus gametes containing any arbitrary 
specified allele at an arbitrary one of the Z loci defining these gametes. To do this, 
it is sufficient, from (8) ~ to prove that 

z*zpiij  - z * z 3 w j ,  (26) 
P p -  3 

where the summation on the right-hand side is over all k-locus gametes contain- 
ing the allele in question. 
Use of ( 5 )  and (22) shows that the left hand side in (26) is 

z* z z xzxj wzj 
P 3 idp 

= ?* xi w< , 
(using an equation identical to (21) with E* replacing 2) 

(27) 
% 

which is the right-hand side in (26). 
‘Thus, equation (26) is true and. from the discussion following equation ( 7 ) ,  
the induced Z-locus AGV is zero at any equilibrium point of the k-locus system. 

We now wish to prove a stronger result. The fact that the apparent AGV is 
zero does not necessarily imply an induced Z-locus equilibrium point at any 
k-locus equilibrium, except in the case Z = 1.  We now show, however, that if the 
B-locus system is at an equilibrium point, so will also be any induced Z-locus 
system. (It is perhaps impcjrtant to stress the distinction between “real” and 
“induced” equilibria. If a k-locus system is at equilibrium, then necessarily any 
Z-locus system is at  a “real” equilibrium. We are here interested, however, in 
something different (and more relevant for practical purposes) , namely whether 
the recurrence relations signifying an equilibrium of the induced system are in 
fact satisfied at an equilibrium of the k-locus system). 

The typical recurrence relation for gamete frequencies in the k-locus system is 

Zx,’ = wi x2 - Z(l)w,j xz xi f(i,j+h) f X ( 2 ) w h j  xh z3 f (h,j+i) (28) 

where iij is the mean fitness of the population. x2 is the frequency of gamete i in 
the current generation, 5,’ the frequency in the next generation, wa is defined by 
( I ) ,  ~ ( ~ 1  implies summation over all gametes i and h with i, j # h, S ( z )  implies a 
parallel summation with h and i interchanged in role; while f(i,i+h) is one-half 
the probability of a recombinational event in an ( i , j )  individual such that one of 
the two gametes produced after this recombination is gamete h. 

At equilibrium, 5%‘ = sa. Now sum equation (28), with x,’ replaced by X a ,  

over all kSP. We find 

iij zp = Ep zp  - z(l)wij xi xj f ( i ,  j+h) 
i E $  

f , 2“)  whj xh xj f (h, j”i) , (29) 
a ESP 

the first term on the right hand side arising from equation (22). It is sufficient 
to consider E(1)  for those gametes i and j differing at two or more loci. If these 
differences occur only at the k-2 loci outside the Z-locus system considered, then 
an exact compensation and cancellation will occur between a term in E(1) and a 
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term in );(2) when summation over i E S p  takes place. It is not difficult to see that 
a corresponding statement applies when exactly one of the loci at which gametes 
i and i differ is included in the 1-locus system. Consider now cases where gametes 
i and i differ at two or  more loci in the I-locus system. Any recombinational event 
not involving these loci will again lead to a cancellation of terms in S(l) and E('). 
Consider then, finally, any recombinational event involving two or more loci 
in the 1-locus system. We assume that the frequency of such recombination is 
independent of the genetic constitution of the loci involved. The gamete xi will 
define a class S,  of I-locus gametes different from the class Sp defined by gamete 
i, and the sum of the second right-hand side terms in (28) becomes 

= f ( P P r )  ZP, ZP z ,  
from (18), where the symbol f ( p p r )  is one-half the frequency of a recombina- 
tional even in the 1-locus system such that one of the I-locus gametes produced by 
a (p,q) individual is gamete r, where gamete r differs from gametes p and q at a 
minimum of two loci. Parallel arguments apply to the summation S ( ' )  and the 
summation of (1 6) over i E S p  then yields 

ZZ Z, = W p  zp - Z ( l ) W p q  zp zq f (p, q+r) 4- Z(')LUq7 z ,  z,. f (4, ~ p )  . (30)  

We have proved: 

RESULT 4. If the k-locus system is in equilibrium, then so also is any margi- 
nal 1-locus subsystem (in the sense of apparent, as contrasted to real, equilibrium 
as discussed above). 

A further result follows almost immediately. The derivation of (30) remains 
true if we replace xi and z p  throughout on the left-hand side by xi' and z i  where 
these are respectively the frequencies OI the itn k-locus gamete and the pth 1-locus 
gamete in the following generation in an evolving system. From this observation, 
and using (30) with z p  on the left-hand side replaced by zp), we find: 

RESULT 5. Changes in frequencies of I-locus gametes can be calculated for 
one generation in aduance knowing only the currefit 1-locus gametic frequencies 
and marginal fitnesses. (In particular, this is true of allele frequencies). How- 
euer, to predict two or more generations in advance, the full k-locus system must, 
in general, be studied. 

It follows in particular that equation (1) is correct, with appropriate defini- 
tions of the wzj, but is useless for predicting more than one generation in advance. 

k-Locus PROPERTIES FROM 1-LOCUS PROPERTIES 

In the above we have considered what properties obtain in marginal 1-locus 
systems in a k-locus system whose behavior is assumed. It is perhaps of more 
practical relevance to ask what properties of a k-locus system must hold, given 
observed properties of induced I-locus subsystems. In this direction, we first show: 
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RESULT 6. If the marginal AGV is zero for each single locus in a k-locus 
system, then the k-locus AGV must be zero. 

Indeed, a stronger result is true, namely that if the AGV is zero for every 
1-locus subsystem (for any fixed value of Z) then the k-locus AGV is zero. The 
proof is straightforward. Suppose, for any given number 1, each 1-locus subsystem 
has induced AGV of zero. Then equation (25) ,  with 4* as defined below the 
equation, holds. But 

?* xi wi = Z* zp W p  [from (26)] 
Z P 

=EX* 2, 
P 

so that 
?* xi (Wi - W) = 0 . 
z 

This is equation (8), and hence equation (16) holds. 
The case 1 =1 is of particular interest. Since “AGV = 0” is equivalent to “no 

changes in allele frequencies,” we can say: if, by considering each locus sepa- 
rately, we expect (at all loci) no changes in allele frequencies, then indeed there 
will be no changes in allele frequencies. In view of the results given below, this 
does not seem to be a trivial conclusion. 

If equation (16) implied that the k-locus system is at an equilibrium point, 
we could conclude from the above that if all one-locus systems were at an 
equilibrium, so also would be the k-locus equilibrium. Unfortunately, (16) does 
not imply equilibrium and we now exhibit an example where a k-locus system 
is not at an equilibrium, even though all Z ( Z <  k) induced subsystems are at 
equilibrium points. 

To demonstrate this, consider the ( k  = 2) two-locus system of MORAN (1964). 
At every point on the trajectory computed by him we have 

frequency ( A , )  = frequency ( A , )  = 0.5 , 
frequency (B,)  = frequency (B , )  = 0.5 . 

Furthermore, at each point on the trajectory, 

induced fitness (AIA,) = induced fitness (A&) , 
induced fitness ( B I B l )  = induced fitness (B,B,) . 

It follows that throughout the evolution of the system, in which gametic frequen- 
cies are constantly changing, both induced one-locus systems are at equilibrium 
points. The entire system, on the other hand, is obviously not at equilibrium. 

We turn now to a consideration of the additive genetic variance and ask to 
what extent its (k-locus) value can be found -from a knowledge of the k con- 
stituent single locus additive genetic variances calculated using marginal fitness 
values. The original derivations of FISHER (1918) at least suggest that the k-locus 
value can be found by simple summation of the k single locus values and this 
also appears to be more or less explicitly stated by WRIGHT (1969, page 439). 
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Now standard theory shows that if we compute the additive genetic variance at 
a single locus by using the marginal fitness values, the estimates of the additive 
parameter ,at is 

& = w t - w ,  (31) 

where W t  is the weighted marginal fitness of allele At. [This conclusion can also 
be reached from equation (12)]. The additive genetic variance at the locus at 
which At appears is then computed, from (13), as 

2 2  yt ( W t - W ) 2  , (32) 

the summation being over all alleles at the locus in question. Adding over all 
loci gives the expression (32) if we now interpret the summation as being over 
all alleles at all k loci. This is not necessarily equal to the true k-locus additive 
genetic variance given by (13). Comparison of (13) and (31) and use of (10) 
shows that a sufficient condition for equality of the two expressions is that 

ytu = Yt yu (33) 

for all alleles At and A ,  at different loci. Condition (29) may be stated as: 

RESULT 7. A sufficient colndition that the true additiue genetic uariance can 
be found by summing single locus marginal genetic uariances is that all pairwise 
linkage disequilibria be zero. 

Note that in practice this situation is most likely to arise approximately fo r  
loci determining characters not associated with fitness, and is less likely to arise 
for those loci which do affect fitness. 

We turn finally to k-locus systems which are at an equilibrium point and 
consider stability properties of the equilibrium. It is trivially easy to find k-locus 
stable equilibria with marginal fitnesses satisfying the stability conditions at all 
1 ( 1  < k) subsystems, and a parallel remark applies for unstable equilibria (“addi- 
tive” fitnesses will serve in both cases). It is also possible for a k-locus system to 
be at an unstable equilibrium and yet the stability conditions be satisfied at all 
1-locus ( 1  < k )  marginals. A far more difficult question is whether a k-locus 
stable equilibrium can lead to apparent 1-locus unstable equilibria. KARLIN 
(1975) mentions an  unpublished proof that this is impossible for small recom- 
bination values and KARLIN and CARMELLI (1975), based on a very large num- 
ber of simulations, conjecture it is impossible for any recombination structure, 
at least for k = 2, 1 = 1 and two alleles per locus. (KARLIN (1975) mentions an 
unpublished proof that for some special fitness configurations marginal under- 
dominance is impossible for any recombination value when k = 2.) Although 
we believe the conjecture of KARLIN and CARMELLI may well be correct for 
k = 2, 1 = 1, it is interesting to note that two published accounts of natural 
populations (LEWONTIN and WHITE 1960; CHRISTIANSEN et al. 1974) apparently 
show behavior contrary to the general spirit of this conjecture, that it is not true 
if fitnesses are frequency-dependent and that for larger values of k and 1 schemes 
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mimicking frequency-dependent-fitnesses might mean that the conjecture cannot 
be generalized. 

The results we have achieved do at least allow us to draw some conclusions, 
and these are most easily discussed when two alleles only occur at each locus. 
First, if the k-locus system is at an equilibrium of any kind (stable or unstable), 
the induced systems at each single locus must exhibit equilibrium behavior and 
heme reveal either underdominance or overdominance. Put in contrapositive 
form, if there exists any one locus for which induced underdominance or over- 
dominance does not appear, then the k-locus system cannot be at an equilibrium. 
This provides a reasonably powerful test for k-locus equilibria, which we regard 
as particularly useful in view of our aim to state facts about a k-locus system 
from observed single-locus behavior. More strongly still, for the k-locus system 
to be in equilibrium, not only must underdominance or overdominance hold; 
the allele frequencies must take the required equilibrium values as defined by 
the induced one-locus fitnesses. The further requirement of marginal stability 
would require all the above to hold with now only overdominance allowed. This 
leads to further intuitive support of the KARLIN-CARMELLI conjecture for k = 2, 
although for larger values of k the picture is quite complex and intuitive argu- 
ments are less valuable. 

An illuminating example of some of these points is provided by the symmetric 
viability matrix of EWENS (1969) (pages 104-105) with 

s = 0.21, t = 0.4, U = 0.1. 

The theory in EWENS (1969, page 105) shows that if R is the recombination 
fraction between the two loci, then for this fitness scheme there are two equilib- 
ria with 

x1 = x4 = 0.25 f 0.25 (1 - R/O.O725)'/' , 
x1 = x3 = 0.25 T 0.25 (1 - R/0.0725)'I2 . 

Both these equilibria exist only when R < 0.07250, and are stable whenever 
R < 0.05756. The marginal fitnesses at the B locus always exhibit overdominance 
at the equilibrium point, but those at the A locus do so only if R < 0.05971. Thus 
we conclude, in this case, that if the two-locus system is at a stable equilibrium, 
both marginal loci must exhibit overdominance, whereas it is possible (when 
0.05756 < R < 0.05971) that both loci exhibit equilibrium and overdominance 
and yet the two-locus system is not at a stable equilibrium. 

GENERAL REMARKS 

We have assumed above that the k-locus fitnesses are fixed constants. This 
assumption can be relaxed, at least for many of our conclusions. Thus results 
1,2,3,4,6 and 7 are true if fitnesses are frequency or density dependent. Result 5 
is not true in such cases since the gene frequencies themselves are not in general 
sufficient to determine the wij. Note that further interesting conclusions are 
possible for frequency-dependent selection schemes, for example that they admit 
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equilibria showing marginal underdominance ( LEWONTIN 1958), whereas we 
have mentioned our belief that this is impossible for fixed fitness schemes. The 
equilibria of LEWONTIN and WHITE (1960) and CHRISTIANSEN et aZ. (1974) 
could well be due to frequency-dependent selection schemes. 

We have also assumed fixed recombination rates throughout. Possible inver- 
sion systems or the evolution of recombination rates will necessitate later gen- 
eralizations of our conclusions. 

Note also that our analysis is deterministic and assumes effectively infinite 
population sizes. This implies not only that we ignore the possible effects of 
stochastic fluctuation but also the fact that, in finite populations, only a very 
small fraction of the possible k locus genotypes will, for large k, be represented 
in the population. These and other complications will be taken up in a subsequent 
paper. 
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