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ABSTRACT 

By using both numerical and analytical approaches, we have shown that 
heterosis alone is not a mechanism for  maintaining many alleles segregating 
at  a locus. Even when all heterozygotes are more fit than all homozygotes, 
the proportion of fitness arrays that will lead to a stable, feasible equilibrium 
of more than 6 or 7 alleles is vanishingly small. More alleles can be main- 
tained if, in addition to heterosis, it is assumed that there is very little variation 
in fitness from heterozygote to heterozygote, with the ratio of mean heterosis 
to standard deviation of fitness among heterozygotes in the neighborhood of 
10. When such conditions hold, the allelic frequency distribution and equilib- 
rium will be very uniform, with all alleles very close to equal frequency 

p = - . It is much more likely that stable equilibria for multiple alleles will 

be best explained by multiple niche selection. 

1 
n 

HE existence of large amounts of genetic polymorphism at many loci in most 
Torganisms has been explained either as the result of the accumulation of 
unselected mutations, modulated by random sampling events (the “neutralist” 
or “neo-classical” theory) or  as the result of the balance of selective forces (the 
“selectionist” or “balance” theory). Both theories need to cope with the existence 
of between two and a dozen alleles segregating at  a typical polymorphic locus 
in natural populations. The recent finding by COYNE (1976) and SINGH, 
LEWONTIN and FELTON (1976) that the xanthine dehydrogenase locus is segre- 
gating for 23 alleles out o i  GO genomes tested (Drosophila persimilis) and for 
37 alleles out of 146 genomes tested (Drosophila pseudoobscura) shows that 
genic variation at individual loci may be much greater than we had previously 
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imagined. Mutational theories deal explicitly with multiple alleles by assuming 
that some large number of allelic states can be generated one from another by 
mutation, different theories putting different restrictions on the kinds of transi- 
tions that are allowed (the “infinite alleles’’ model of KIMURA 1968; the “ladder 
model” of OHTA and KIMURA 1973). Selective theories, on the other hand, have 
not dealt explicitly with multiple alleles at a locus, but have depended upon a 
heuristic extension of the principle that superior heterozygote fitness in the two- 
allele case will maintain a stable polymorphism. More complex models of selec- 
tion coefficients varying in time and space, o r  frequency-dependent fitness 
models, likewise argue from two-allele cases and assume that some analogous 
relations among fitnesses in the multiple-allelic case will apply. Although a 
usable mathematical theory of the stability of multi-allelic polymorphism has 
existed for some time for the constant fitness model (KIMURA 1956; PENROSE, 
SMITH and SPROTT 1956; MANDEL 1959) and a 1e;s useful one for frequency- 
dependent fitness (LEWONTIN 1958). no one seems to have asked whether these 
results make heterosis a reasonable explanation of the observed polymorphism, 
although as early as 1970 GILLESPIE, confirming a conjecture of KOJIMA, had 
shown by Monte Carlo simulation that as the number of alleles increases, the 
proportion of randomly generated fitness arrays that leads to a stable feasible 
polymorphism drops very rapidly. (See Figure 1 of GILLESPIE 1977). Are the 
restrictions on the fitnesses implied by the stability analysis so severe as to tax 
our credulity? That is the question we ask in this paper. We treat only the case 
of constant fitnesses here. The much more complicated problem of frequency- 
and density-dependent fitnesses is the subject of a further investigation. 

The mathematics of stable equilibrium 
KIMURA (1956) originally gave rules for the stability of a n-allelic poly- 

morphism for the continuous time case, but MANDEL (1959) showed that these 
were exactly equivalent to the discrete time analysis. Thus, we use KIMURA’S 
argument here, but for the discrete model. In any case, there is nothing involved 
but an application of the standard analysis of stability of linear systems. 

Let pi be toe frequency of the allele Ai 
Wii be the fitness of genotype AiAj 

Wi = Z pjWi j  = marginal fitness of the allele Ai 
n 

j=1 

- 

n r c  
and =, p i w i  = , E  p j W i j p i  = mean fitness of the population. Then 
the change in freqcency in the ith allele in one generation is 

1=1 1 z 1  3=1 

(1) 
- _  

Api = pi (wi- W)/w. 
At equilibrium, where Api  = 0 €or all i, if all the alleles are to be present SO 

that none of the p i  are zero, we must have that 

Vi - TV = o for all i 

piWij = w for all i and i 

( 2 )  

(3) 

or equivalently 

j=1 
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By subtracting wn - w from all the equations and substituting pn = 1 -. 2 pi 
these eqrtations can be reduced to a set of n - 1 independent linear equations. 

(4) 

n-1 

2=1 

n-1 

i=1 z p j  (Wij - win - w,j + wnn> = w,, - wi, 
f o r i = l ,  n - 1  

Since this is a set of linear equations, there can be only one solution, and this 
is easily iound by the ratio of the determinants 

det Di 
det D 

ei = ___ ( 5 )  

where D is the matrix of coefficients on the left side of the system of equations 
(4) and Di is that matrix with the ith column repleced by the column vector 
on the right hand side of equations (4). 

The necessary and sufficient condition for stability of the equilibrium vector 
p^ is that all the eigenvalues of the matrix D be negative. Because the matrix 
is symmetric (Wij = W3i) ,  thereis a simple algorithm for testing this property 
(GANTMACHER 1960). We denote by the Ai a submatrix of D consisting of the 
upper left hand corner 01 D down to the ith row and ith column. Then the 
necessary and sufficient condition for the stability of the allelic frequency 
equilibrium is that 

(-l)i det Ai  > 0 (6) 
lor all i. 

That is, the successive A$ must alternate in sign with A, < 0, A, > 0, A3 < 0. . . . 
To be biologically relevant, an equilibrium must not only be stable, but must 

also be feasible, that is all the allelic frequencies must be between 0 and 1 and 
they must add up to unity. The conditions for a biologically meaningful equilib- 
rium are then that the solutions (5) all be positive and less than unity, together 
with conditions (6) for stability. The conditions for stability alone are not enough 
for our purpose and, as we shall see, many fitness relations give a stable equilib- 
rium, but a meaningless one because some of the allelic frequencies are outside 
the range of 0 to  1. 

Unfortunately, the conditions given by (5) and (6) cannot be restated in terms 
of a few simple rules on the fitnesses that have any intuitive meaning. For 
example, it is not the case that if all heterozygotes are more fit than all homozy- 
gotes, there will necessarily be a stable, feasible equilibrium. Table l a  shows a 
fitness matrix in which all homozygotes are more fit  than all heterozygotes, yet 
no feasible equilibrium exists. Nor is it the case that if there is a stable feasible 
equilibrium, all homozygotes will be less fit than heterozygotes. Table l b  shcwvs 
a stable, feasible equilibrium in which one homozygote, A,A,, is more fit than 
the heterozygote A,A,. As already pointed out by KIMURA (1956) and MANDEL 
(1 959), heterosis is neither a mathematically necessary nor sufficient condition 
€or a stable feasible equilibrium of more than two alleles. 

Numerical inuestigations 
The problem is to turn expressions (5) and (6) into some interpretable state- 

ments about the kinds of fitness relations that lead to stable, feasible equilibria. 
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TABLE 1 

(a) All heterozygotes more fit than all homozygotes but no feasible equilibrium 

AI 0.6563 0.7462 0.8861 
A2 0.7462 0 2817 0.7654 
A3 0.8861 0.7654 0.6121 

fi  = 01.5517, -0.0132, (1.4615 

(b) Stable feasible equilibrium with one homozygote superior to one heterozygote 

A, A, A, 

*I A, A, 
0.2358 0.8457 0.7482 
0.8457 0.1837 0.3927 
0.7482 0.3927 0.3964 

6 = 0.4297, 08.1938, 0.3764 

For n alleles there are n ( n  + 1 ) /2 genotypes and vve may scale all their fitnesses 
into the interval 0,l. We may then represent the set of fitnesses of all the geno- 
types as a point in an n ( n  -I- 1)/2 hypercube of unit dimensions. With such a 
picture, there are two sorts of questions we may ask. First. what is the size of 
the region within this fitness space which corresponds to stable feasible, equilibria 
of allele frequency? A moment’s reflection shows that for two alleles the answer 
is precisely 1/, because heterosis is the necessary and sufficient condition for  a 
stable, feasible equilibrium of two alleles, and in precisely one-third of all pos- 
sible fitness relations, the heterozygote will be the most fit of the three genotypes. 
How will the measure o€ the stable, feasible region change as the number of 
alleles is increased? Second, what is the shape of the region of stability? Again, 
for  two alleles, we know the answer precisely and can draw the boundaries of 
i he wedge-shaped region in the three-dimensional fitness cube. We cannot delimit 
these boundaries exactly for higher dimensions. but we will ask a slightly differ- 
ent question. If we break the fitness space into subregions, corresponding to dif- 
ferent kipds of constraints on the fitnesses. what will the measure of the stable 
region within these subspaces be? 

One method of investigation would be to make a regular lattice of points in 
the space and test each one for feasibility and stability. For 10 alleles, there 
would be a 55-dimensional space, and if we spaced our lattice points even as 
coarsely as every 0.1 from 0 to 1 for each fitness dimension, there would be 1155 
such points. many of which would be redundant because of symmetries. This 
task is obviously impossible. The alternative, which we have chosen, is to throw 
points onto the fitness space at random and to use the proportion of stable, 
feasible cases to characterize the measures of the stable set in each region of the 
space. Each fitness is chosen at random from a uniform distribution, and the 
resultant matrix of fitnesses is tested for stability and feasibility. By generating 
large numbers of replicate matrices, the density of stable, feasible points in the 
region can be estimated. 

It is essential to understand that although fitnesses are generated at random 
from a uniform distribution, we are not trying to make statements about the 
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“probability” that stable equilibria will occur. Such probability statements would 
depend upon assumptions about the a priori distribution of fitness values for 
genotypes in nature as they are formed from the mutational array of alleles. 
But this is precisely the opposite of what is being done. The random generation 
of fitnesses is simply a device for obtaining the measure of stable, feasible equilib- 
ria in various regions of the parameter space. Once these measures are estimated, 
they can be used in conjunction with assumptions about the nature of fitness 
determination to decide whether stable selective equilibria are likely to be found. 

R E S U L T S  

(a) Complete fitness space. The measure of stable and feasible equilibria in 
the entire n ( n  4- 1)/2 fitness simplex was obtained by drawing the W,j inde- 
pendently and identically from the uniform distribution on the interval 0,l.  For 
reasons of computational efficiency, after a matrix was formed it was tested first 
for stability and then, if stable, was tested for feasibility. This procedure was 
followed in exploring all subspaces as well. As a result we have not only the 
measures of the stable, feasible equilibria, but also can break down the failures 
of equilibrium into thoce cases that were unstable and those that were stable but 
nonfeasible. The result of 100,000 such random matrices is shown in Table 2a 
€or various numbers of alleles. The observed empirical proportion of stable, 
feasible equilibria for two alleles does not differ significantly from the expected 
0.333 . . . (xI2 = 0.796; P = 0.40)) and then decreases very rapidly as the number 
of alleles increases. Indeed, there was not a single stable feasible, equilibrium 
for 6 alleles out of the 100,000 cases tried: Figure 1 plots the logarithm of the 
proportion of stable, feasible equilibria against the square of the number of 
dleles, giving an extremely good fit to a straight line, so we may say as a close 

TABLE 2 

Proportion of unstable, stible but nonfeasible, and stable feasible equilibria for different 
numbers of alleles ( n )  in different regions of the fitness simplex 

a.  Total space b. Pairwise heterosis c. Total heterosis 
N = 100,000 N = 10,000 N = 10,000 
Stable non- Stable Stable non- Stable Stable non- Stable 

n Unstable feasible feasible Unstable feasible feasible Unstable feasible feasible 

0.49935 0.16599 0.33466 0 
0.87331 0.08432 0.04237 0.0470 
0.98516 0.01244 0.00240 0.2954 
0.99920 0.00074 0.03006 0.6699 
1.00000 0 0 0.9145 

0.3895 
0.9996 
1 .ooao 

0 
0.4306 
0.5787 
0.3185 
o . a m  
0.0105 
0.0004 
0 

1 .00.00 
0.5224 
0.1259 
0.01116 
0.0003 
0 
0 
0 

0 0 
0.0335 0.2545 
0.1918 0.4649 
0.5122 0.3837 
0.8170 0.1693 
0.9589 0.0400 
0.9970 0.0030 
1.0000 0 

1.0000 
01.71 20 
0.3433 
0.1041 
08.0137 
0.001 1 
0 
0 

N is the number of replicate matrices generated. 
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of allele frequencies for different numbers of alleles. The line for  Total Space should be referred 
to the n 2  scale on the abscissa. The lines for  Pairwise Heterosis and Total Heterosis should be 
referred to the n3 scale. Ordinate shows logarithm of proportion stable and feasible. 

approximation that the measure of stable, feasible equilibria in the total fitness 
space decreases as e-%'. The actual empirical relationship is 

p = 1.723 e-.411nz 

which is not particularly enlightening. This line can be compared directly with 
the results given in Figure 1 of GILLESPIE (1977). 

(b) Pairwise heterosis. The fact that the measure of stable feasible, equilibria 
in the total fitness space is small is perhaps not too surprising. We have gone on 
to examine smaller regions of this space where intuition would suggest the 
opposite. The next case is that of pairwise heterosis where each heterozygote 
is more fit than the homozygotes for its component alleles, i.e., Wii < Wij > Wjj, 

but without restriction on the relationship between a heterozygote fitness Wij, 
and an unrelated homozygote W w .  Table 2b shows the result of 10,000 fitness 
matrices with this characteristic. (The APPENDIX gives the method used for gen- 
erating such matrices.) For two alleles, of course, all cases are stable and feasible, 
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since Wll < W,, > W,, is the necessary and sufficient conditions for stable, 
feasible equilibrium of two alleles. As the number of alleles increases, the pro- 
portion of stable, feasible cases again decreases rapidly so that there are no stable 
equilibria for 7 or more alleles out of 10,000 cases tried. This result is also plotted 
in Figure 1, but using an abscissa of n3 rather than n2, giving a very good fit 
to the straight line 

p = 1.658 e-.'J397n3. 

Thus, the measure of stable, feasible equilibria within the region of fitness space 
defined by painvise heterosis falls off approximately as e+'. Clearly pairwise 
heterosis alone is not a sufficient explanation for the maintenance of large num- 
bers of alleles at a locus, without lurther restrictions on the fitnesses. 

(c) Total heterosis. An even greater restriction on fitness relations is the 
requirement that all heterozygotes be more fit than all homozygotes, with no 
fitness overlap between the two classes. The result of generating 10,000 such 
fitness arrays is shown in Table 2c and Figure 1. (See APPENDIX A for the 
method.) The measure of stable, feasible equilibria for this region of fitness space 
falls off at about half the logarithmic rate as for pairwise heterosis, 

but still approximately as cn3. It  appears that even total heterosis, without further 
restriction, is incapable o€ maintaining more than a half-dozen alleles in stable 
equilibrium in a population. 

Stability and feasibility 
Table 2 shows the loss of biological equilibria with increasing numbers of 

alleles from two sources: unstable equilibria, and equilibria that, although 
stable, do not lie in the biologically meaningful range where all alleles fre- 
quencies are between 0 and 1. Because stability was tested first and then only 
the stable residue was tested for feasibility, the values in Table 2 do not make 
the relative importance of stability and feasibility clear. 

TABLE 3 

Comparison between the proportion of fitness matrices that are stable and the 
proportion of stable matrices th i t  give a feasible solution 

Total space 

Stable stable 
Feasible/ 

Pairwise heterosis 

Stable stable 
Feasible/ 

Total heterosis 

Stable stable 
Feasible/ 

0.50065 0.66845 
0.12669 0.334440 
0.01484 0.16163 
0.00080 0.07500 
0 
0 
0 
0 

- 
-- 
__ 
- 

1 .0oao 1 .a000 
0.9530 0.5482 
0.70447 0.1787 
0.3301 0.0352 
0.0855 0.01035 
0.0105 0 
0.0004 0 

1.O~OOo 1.0000 
0.9665 0.7367 
0.8082 0.4248 
0.4878 0.2134 
0.1830 0.0749 
0.041 1 0.0268 
0.0030 0 
0 - 



156 R .  C .  L E W O N T I N ,  L. R. G I N Z B U R G  A N D  S. D. T U L J A P U R K A R  

Table 3 shows the proportion of stable equilibria that are also feasible for 
different numbers of alleles. In all three regions, the proportion of stable 
equilibria that are feasible decreases with increasing numbers of alleles. This 
means that feasibility is increasingly more difficult a criterion to satisfy with 
more and more alleles, even among stable equilibria. In the two heterotic regions 
of the fitness space, the fall-off in feasible equilibria within the space of stable 
equilibria is even more rapid than in stable equilibria, although in the total 
fitness space the reverse is true. This has obvious implications for other models 
of selection, such as frequency dependent selection, which may have an effect 
on stability, but not necessarily on feasibility (see below). 

The distribution of allele frequencies 

In addition to asking about the region of fitness space that leads to stable. 
feasible equilibria, we may also ask about the distribution of the stable. fzasible 
equilibria in the space of allele frequencies. To what kind of allelic frequency 
distributions do the stable, feasible fitness matrices lead? The problem is easily 
solved explicitly for two alleles. If we parameterize the fitnesses of the three 
genotypes, A A  Aa and as as l-s, 1 ,  l-t, the frequency of the allele A at 
equilibrium 

as is well-known. If s and t are uniformly distributed in the interval 0,1, then 
the standard textbook method of finding the distribution of a function of two 
variables yields the density function + (6) as 

1 
2 ( 1 - 6 ) 2  +(6> = 0 5 p 5 0.5 

0.5 5 p 5 1 

This function is shown in Figure 2 and the empirical distribution of p^ from the 
numerical analysis give an excellent fit when compared at intervals of p = 0.1 
( x ~ ~  = 2.119, P = 0.7) serving as a check on the computer program. Figure 2 
shows that allele frequencies will be packed around the center of the gene fre- 
quency line, but not drastically so, with 65% of the 6 values falling between 
0.25 and 0.75. 

For a larger number of alleles. n, we must consider the distribution of the 
n-1 dimensional vector of independent allele frequencies. This can be done by 
representing the vector as a point in a space of gene frequencies and then asking 
how the points fill the space. The most convenient representation is an n-1 
dimensional equilateral tetrahedron so that the frequency of each allele at every 
point is the distance of the point from one of the (n-1)-faces. For three alleles, 
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0 .2 .4 ,, .6 .8 1.0 

P 
FIGURE 2.-The theoretical distribution of equilibrium allele frequencies in a two allele 

heterotic model when the fitness of homozygotes are drawn from a uniform distribution. 

this is the familiar triangular or de Finetti diagram. To see how such points fill 
the space we need some measure of location of the point and we have chosen 

I = ;  (pi--) 1 2  , 
n i=1 

the sum of squared deviations of the vector components from the centroid of the 

space, -, -, - . . . -, the point of maximum genetic variation. If all the alleles 
for a given equilibrium are equally frequent, I = 0, while if all the alleles are 
vanishing low in frequency and one allele makes up the entire population 

I = -  . All allelic vectors with equal values of I lie on a spherical surface of 
radius I around the centroid and are, from the standpoint of genetic variation, 
identical. At the same time, we can calculate by geometry the proportion of the 
total volume of the tetrahedral space that lies in a shell between any two spheri- 
cal surfaces and compare that volume with the proportion of all equilibrium 
vectors that fall within the shell. In this way we can examine the relative con- 
centrations of the equilibrium points in different regions of the frequency space. 
Figures 3a. b, c and d make this comparison for n = 2, 3,4  and 5. In  each figure 
there is a continuous curve showing the proportion of the volume of the space 
that lies in a shell of thickness AI = 0.01, and histograms showing the proportion 
of all stable feasible equilibrium vectors that fall within this shell. For  n = 2, 
the histogram is derived analytically, while for n = 3, 4 and 5, the empirical 
results of 5,000 or more computed equilibria are plotted. For n = 5, it was not 

1 1 1  1 
n n n  ri 

n-I 
n 
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FIGURE 3 (a,b) .-Comparison of the proportion of equilibrium vectors falling in  successive 
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the volume of the simplex falling in those shells (continuous curve). Heavy histogram is for 

n 1 

total heterosis, light histogram for pairwise heterosis. Abscissa: I = Z (pi - - ) z ;  Ordinate: 
i=l n 

proportion of cases. 
(a) 2 alleles; (b) 3 alleles. 
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FIGURE 3 (c,d) .-Comparison of the proportion of equilibrium vectors falling in successive 
shells around the centroid of the allele frequency simplex (histograms) with the proportion of 
the volume of the simplex falling in those shells (continuous curve). Heavy histogram is for 

total heterosis, light histogram for pairwise heterosis. Abscissa: I = I: (pi - -)2; Ordinate: 

proportion of cases. 

R 1 

i=l n 

(c) 4 alleles; (d) 5 alleles. 

possible to calculate, by geometry, the volumes of shells beyond I = 0.05; thus, 
only a partial comparison is shown. The results in Figure 3 are consistent and 
clear. The distribution of stable, feasible equilibria is clearly packed near the 
center of the frequency space, with the packing more pronounced for the totally 
heterotic model than for pairwise heterosis. Second, the packing becomes less 
pronounced as the number of alleles increases. For example, we see that there 
is a consistent deficiency of frequency vectors in the region above I = 0.13 and 
an excess below Z = 0.13 for pairwise heterosis and 3 alleles. For 4 alleles, how- 
ever, there is nearly perfect agreement between volume and frequency above 
Z = 0.25, the peak of the frequency distribution being shifted only slightly to the 
left. While only a partial comparison is possible for k = 5, the frequency peak 
now coincides with the volume peak, although more cannot be said. For total 
heterosis, the larger the number of alleles, the more the peak of the frequency 
distribution is shifted rightward and the narrower the distribution, but we are 
unable to compare it with most of the theoretical volume at k = 5. 



160 R. C .  LEWONTIN, L. R. GINZBURG A N D  S. D. TULJAPURKAR 

Some malytic results 
While we canr?ot provide simple interpretable conditions on the fitnesses that 

correspond to our empirical results, there are some easily used conditions on the 
fitnesses that are necessary conditions for  stable equilibrium. If any of these 
conditions fail on inspection of these fitness matrices, then no stable equilibrium 
exists. 

(a) For eveiy pair of alleles i and j 

This comes directly from condition (6) that 

Ai  > 0 

so that when i = 1 

2W,k - Wii - W k k  > 3. 

But since the order of rows and columns is arbitrary in the fitness matrix, this 
must be true for any choice of i and k and (7) is proved. It follows immediately 
from (7) that the weaker condition also holds. 

where TVZ3 and W,, are the (unweighted) average fitnesses of hetcrozygotes and 
homozygotes. 

(c )  For every pair of different alleles i and 1,  there must exist a third allele k 
such that 

w,, < W,k + W l k  , (9) 

(the “triangle inequality”). 
The proof depends upon the fact that at stable equilibrium the mean fitness 

of the population W is a maximum, and that along any two-allele boundary of 
the allele frequency simplex defined by p z  + p 3  = 1, there is also a point, p+,  
that maximizes fitness along that boundary, because W is a convex function. 
The full proof is given in APPENDIX B. 

Whereas (a) and (b) are requirements on the relation between a heterozygote 
and its constituent homozygotes, the triangle inequality is a requirement on the 
relationships among heterozygotes and comes down, essentially, to forbidding 
any particular heterozygote from having a much greater fitness than any other 
heterozygote. Indeed, the most fit heterozygote may not be twice as fit as the 
next best heterozygote, a fact we shall use later. The result of there being one 
very fit heterozygote will be to drive out the alleles not involved in this hetero- 
zygote, irrespective of the homozygous fitnesses. 
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A region of fitness spme with high stability 

Although the very strong requirement of total heterosis is insufficient to pro- 
vide stable polymorphism for even a moderate number of alleles, there is a region 
of the fitness space that can provide such stability. Consider the degenerate case 
of n alleles in which all heterozygotes have equal fitness, say W,j = 1, and all 
homozygotes have equal fitness, smaller than the heterozygotes, say W,i I-s. 
Clearly, by symmetry, an equilibrium exists with all allele frequencies pi = l / n .  
Moreover, this equilibrium is stable because n-2 eigenvalues of the matrix of 
elements (W,j - Win - W j ,  + W,,) are -s and the last is -ns, so that are all 
negative. Beginning with this degenerate case, we can explore the region of 
fitness space around it by allowing some variation in fitnesses among heterozy- 
gotes and among homozygotes. It seems likely that if either variation is not too 
great, the fitness matrix so produced ought usually be stable. 

There is some foreshadowing of this result in the “triangle inequality” of the 
previous section and in the observation that the empirical distribution of stable 
vectors in our numerical work was concentrated in the center of the frequency 
simplex. 

Let us assume that 

where 6 , j  and E ,  are random variables with mean zero and standard deviations 
ug and uE respectively. What values of s, us and uE are such as to make a stable, 
feasible equilibrium very likely? From necessary condition (7) above, s should 
be large as compared to the sum of the two standard deviations, so that it is 
extremely unlikely that a heterozygote will be smaller than the average of the 
two homozygotes that compose it. To prevent much overlap between the homozy- 
gote and the heterozygote distributions S / U  > 5, say. On the other hand, the 
triangle inequality puts an upper bound on as. Suppose S is uniformly distributed. 
Then provided the lower bound of 6 were -1/3 and the upper bound +1/3, W,, 
would be bounded between 2/3 and 4/3 and the triangle inequality would always 
be satisfied even in the worst possible sample. This corresponds to 

for the variance of a uniform distribution with range 2/3. This heuristic argu- 
ment, as we will show, turns out to give a surprisingly good approximation to the 
polymorphism in this region of the fitness space. 

We have generated large numbers of fitness matrices by choosing the hetero- 
zygotes from a uniform distribution with mean 1 and standard deviation us, and 
heterozygotes from a uniform distribution with mean (1-s) and standard devia- 
tion uE. A sampling of the results is given in Tables 4, 5 and 6. Table 4 shows 
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TABLE 4 

Proportion of unstable, nonfeasible and stable feasible equilibria for different 
numbers of alleles, n, for two cases of equal ratio s/u 

N = 1000 s = 0.1 U = 0.01 s = 0.5 o = 0.05 
Stable Stable Stable Stable 

n Unstable nonfeaable feasible Unstable nonfeasible feasible 

2 0 0 1 .WO 0 0 1.000 
3 0 0 1 .om 0 0 1.000 
4 0 0 1.000 0 0 1.000 
5 0 0 1 .WO 0 0 1.000 
6 0 0 1.000 0 0 1 .WO 
7 0 0 1.000 0 0.002 0.998 
8 0 0.012 0.988 0 0.002 0.998 
9 0 0.019 0.981 0 0.011 0.989 

10 0 0.028 0.972 0 0.W7 0.973 
11 0 0.063 0.937 0 0.065 0.935 
12 0 0.107 0.893 0 0.096 0.904 
13 0 0.178 0.822 0 0.138 0.862 
14 0 0.231 0.769 0 0.195 0.805 
15 0 0.334 0.666 0 0.281 0.719 
16 0 0.402 0.598 0 0.374 0.626 
17 0 0.511 0.489 0 0,483 0.517 
18 0 0.583 0.417 0 0.564 0.436 
19 0 0.676 0.324 0 0.649 0.351 
20 0 0.743 0.257 0 0.731 0.269 

u = u  = = U .  
? i &  

TABLE 5 
The effect of changing the ratio s/u, when U = U = u6, on the proportion of 

unstable, nonfeasible and stable feasible equilibria 

s/u = 10 s/a = 6.7 s/o = 5 
Stable non- Stable Stable non- Stable Stable non- Stable 

n Unstable feasible feasible Unstable feasible feasible Unstable feasible feasible 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0.012 
0.019 
0.028 
0.063 
0.107 
0.1 78 
0.231 
0.334 
0.402 
0.51 1 
0.583 
0.676 
0.743 

1 .o 
1 .ooo 
1 .a00 
1.000 
1.000 
1.000 
0.988 
0.981 
0.972 
0.937 
0.893 
0 822 
0.769 
0.666 
0.598 
0.489 
0.417 

0.257 
0.324 

0 0 
0 0 
0 0.001 
0 0.025 
0 0.062 
0 0.131 
0 0.253 
0.001 0.398 
0.001 0.538 
0.014 0.674 
0.039 0.764 
0.088 0.813 
0.180 0.763 
0.286 0.694 
0.438 0.551 
0.602 0.336 
0.748 0.251 

0.934 0.066 
08.854 0.146 

1 .O'OO 
1.000 
0.999 
0.975 
0.938 
0.869 
0.747 
0.601 
0.461 
0.312 
0.197 
0.099 
0.057 
0.020 
0.011 
0.002 
0.001 
0 

0 

0 
0 
0 
0 
0.001 
0.017 
0.072 
0.165 
0.315 
0.499 
0.679 
0.845 
0.931 
0.975 
0.990 
1 .000 
1.000 

1 .om 
1.000 

0 
0.002 
0.04.8 
0.171 
0.326 
0.530 
0.669 
0.G89 
0.622 
0.477 
0.31 7 
0.154 
0.069 
0.025 
0.010 
0 
0 

0 
01 

1 .oaa 
0.998 
0.952 
0.829 
0.673 
0.453 
0.259 
0.146 
0.063 
0.024 
0.004 
0.001 
0 
0 
0 
0 
0 

0 
0 
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TABLE 6 

Comparison of the effects of changing the uariation among the homozygous fitnesses, 
u2, and among heterozygoie fitnesses, u2, on the stability and feasibility of equilibria 

6 

N = 1000 
s =  0.1, Q = 0 = 0.01 s = 0.1, 0 = 0.01, 0 = 0.04 

6 E  6 e 
Stable non- Stable Stable non- Stable 

n Unstable feasible feasible Unstsble feasible feasible 

s = 0.1, (r = 0.04, Q = 0.01 
Stable 8 non- E Stable 

Unstable feasible feasible 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0.005 

0.014 

0.057 
0.093 
0.154 
0.229 
0.324 

a.oai 

o.oa9 

0.029 

0 
0 
a 
a 
0 
0.001 
0.003 
0.012 
0.021 
0.051 
0.087 
0.137 
0.202 
0.267 
0.358 
0.457 
0.558 
0.650 
0.714 
0.789 
0.854 
0.985 
0.921 
0.923 
0.919 
0.889 
0.837 
0.766 
0.675 

1.000 
1 .ooo 
1.000 
1.000 
1.000 
0.999 
0.997 
0.988 
0.979 
0.949 
0.913 
0.863 
0.798 
0.733 

0.543 
0.442 
0.350 
0.286 
0.210 
0.141 
0.096 
0.065 
0.048 
0.024 
0.018 
0. oo?l 
0.005 
0.001 

a.642 

0 
0 
0 
0 
0 
0 
0 
0.W1 
0.004 
0.009 
0.017 
0.028 
0.049 
0.079 
a. 120 
0.185 
0.253 
0.347 
0.433 
0.516 
0.591 
0.673 
0.749 
0.814 
0.870 
0.908 
0.939 
0.955 
0.972 

0 
0 
0.010 
0.018 
0.053 
0.097 
0.159 
0.231 
0.309 
0.392 
0.430 
0.570 
0.635 
0.694 
0.718 
0.713 
0.678 
0.621 
0.549 
0.475 
0.404 
0.324 
0.250 
0.185 
0.1301 
0.0192 
0.061 
0.045 
0.028 

1 .OIOO 
1.000 
0.990 
0.982 
0.947 

0.841 
0.768 
0.687 
0.599 
0.493 
0.402 
0.316 
0.227 
0.162 
0.102 
0.069 
0.032 
0.018 
0.009 
0.005 
0.003 
0.001 
0.001 
0 
0 
01 
0 
0 

a.903 

0 
0.01 1 
0.130 
0.405 
0.700 
0.915 
0.983 
0.999 
1 .OOIO 

0 
0.229 
0.480 
0.467 
0.271 
0.083 

0.00~1 
0 

0.01 1 

1.000 
0.760 
G.33C 
0.138 
0.029 
0.002 
0 
0 
0 

that the measure of stable feasible equilibria is quite high, even for 20 alleles 
when the ratio s/o = IO, and that this is independent of the absolute values of s 
and U. Table 5 shows the effect of changing s / ~  from IO to 5. There is a drastic 
reduction in the measure OP stable feasible equilibria. Whereas there are no 
unstable cases for  s/u = 10 even for as many as 20 alleles, all the loss being the 
result of nonfeasible equilibria, at s/o = 5 ,  there is a rapid loss of stable equilibria 
above 10 alleles. Even so, this region of the fitness space has a larger measure of 
stable, feasible equilibria than the simple totally heterotic region, yet total 
heterosis does not apply here. The uniform distributions of homozygotes and 
heterozygote fitnesses have ranges of + d l 2  U so that if s/a = 5, the ranges of the 
distribution are 20.69s and the overlap between then is nearly 30%. When 
S/U = 10, there is no overlap between homozygotes and heterozygotes so that 
total heterosis is guaranteed, but in addition there is a very restricted range of 
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FIGURE 4.-The proportion of equilibrium vectors falling in successive shells around the 
centroid of the allele frequency simplex for different numbers of alleles and different ratios s/u. 
Dashed line: s / u  == 10; solid line: s/u = 5.  (a)  3 alleles; (b) 4 alleles; (c) 5 alleles. 

homozygous and heterozygous fitnesses. This effect can also be seen in the distri- 
bution of stable equilibrium vectors shown in Figure 4. The vectors are extremely 
tightly packed into the central region of the simplex as compared even with the 
totally heterotic case of Figure 3.  

Table 6 shows the effect of the “triangle inequality”. It shows that it is the 
variation among heterozygote fitnesses, us , that controls the measure of the stable, 
feasible equilibria region, rather than the variation among homozygotes, U,”. 
Increasing uE from 0.01 to 0.04 has a rather small effect when U,? is held at 0.01, 
but when the reverse change is made, a drastic reduction in the stable, feasible 
equilibrium occurs. 

In  summary, there is a region of the fitness space that does have a large 
measure of stable, feasible equilibria for many alleles, but this region requires a 
difference between homozygotes and heterozygotes that is quite large compared 
to the variation in fitness among heterozygotes. Equilibria corresponding to this 
region of the fitness space are characterized by a nearly uniform distribution of 
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allele frequencies, with all alleles very close to p ,  = l /n.  This region will cer- 
tainly not account for large numbers of segregating alleles in which one or two 
alleles are rather frequent, while the rest are relatively rare, as in the data of 
SINGH, LEWONTIN and FELTON (1976) and COYNE (1976). 

An analytical characterization of the high stability region 

The empirical results of the previous section define a region of high stability 
in fitness space. We now obtain analytical criteria that support these empirical 
results and extend their applicability when the number n of segregating alleles 
becomes large. 

In this section it will be convenient to work directly with the matrix of fitnesses 
(W,,) rather than with the transformed matrix of elements (W,, - W , ,  - 
Wnj  - Wn,). The stability conditions of equation (6) on the latter matrix have 
been shown by KINGMAN (1961) to be equivalent to the condition that the fitness 
matrix ( W,,) have only one positive eigenvalue. 

The region of fitness space explored in the previous section is centered on the 
case of n alleles in which all heterozygote fitnesses are W,, = 1, and all homozy- 
gote fitnesses are W,, = 1 - s. The matrix (W,,) then has n - 1 negative eigen- 
values equal to -s, and one positive eigenvalue equal to ( n  - s) , in agreement 
with the stability condition stated above, The region of fitness space around this 
point consists of points represented by the fitness mrltirx (W,, + S t ? ) ,  where 
S , ,  = S , ,  are variations in heterozygote fitnesses and S , ,  = E ,  are variations in 
homozygote fitnesses. As in the previous section, the elements of the symmetric 
matrix ( S , , )  are taken to be random variables with mean zero and a common 
standard deviation U = ue = us. The stable region in fitness space may now be 
defined as that region where the matrix ( W,, + a,,) has only one positive eigen- 
value. But the second largest eigenvalue of ( W,j  + a,,) , A,, is always less than 
or equal to the sum of the second largest eigenvalue of W,, and p, the largest 
eigenvalue of (a,,). Therefore a sufficient condition for stability is that p - s 5 0. 

Therefore we need a description of the eigenvalues of ( S a , ) .  A suitable descrip- 
tion is provided by the work of WIGNER (1958). He showed for matrices of the 
type (S,,) that, as the dimensionality of n becomes very large, the proportion of 
eigenvalues of ( 8 , j )  within a unit interval at 5 is given by 

and f ( X I  = 0, forx2 > 4nu2 , 

It folllows at least for  large n that the largest eigenvalue of ( S i j )  is ,p I 2 4 n .  
The stable region of fitness space can therefore be described by the condition 

2 q / n  < s, which can be written as 

S - > 2qY 
U 
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Condition (10) can be used either to characterize the mean difference s between 
heterozygotes and homozygotes and the variation U in fitnesses that are required 
for stability with a given number of alleles, or to define for given s and v the 
maximum number of alleles that can be maintained in stable equilibrium. 

Although condition (10) should be most accurate for large numbers n of 
alleles present, it turns out to be very effective even for relatively small numbers. 
As a test of (10) , we give S / U  the values 10, 6.7, 5 respectively and find that the 
measure of unstable states in the resulting fitness space should begin to be observ- 
able (i.e., greater than zero) when the number n of alleles equals or exceeds the 
values of 25, 11,6 respectively. The empirical results at these three values of s /u  
are given in Table 5 and are clearly in excellent agreement with condition (1 0) . 

We have assumed so far that the fitness variations 6, j  of heterozygotes and 
6,i = ~i of homozygotes are drawn from distributions with identical variance U'. 

However WIGNER (1958) pointed out and ARNOLD (1967) has proved that the 
eigenvalue distribution of the matrix ( 6 i i )  remains unchanged for large n even 
if the variances of 6,i (i#j)  and = ~i are different. In such a case condition 
(IO) remains valid if we replace U by the standard deviation us of heterozygote 
variation. This conclusion is clearly reflected in the empirical observation of the 
previous section that the measures of stability are very sensitive to changes in 
ug but insensitive to changes in uE. 

It is clear from (10) that in order to achieve stability the mean difference 
between homozygotes and heterozygotes must be increasingly larger than the 
variation among heterozygotes as the number of alleles increases. Although (10) 
does not provide information on the feasibility of equilibria it does define clearly 
the region of high stability in fitness space. 

Other modes of selection 

We have shofwn that large numbers of segregating alleles are not easily 
accounted for by vague invocations of heterosis, even of the strongest kind, unless 
that strong heterosis is also accompanied by strong restrictions on the variation 
in fitness among heterozygotes, and to a lesser degree among homozygotes. I t  
might be argued that there is good reason to suppose that the restricted region of 
fitness space in which stable equilibrium occur is precisely the region where 
fitnesses in nature will be found. As new mutations occur, they will be lost to the 
population if their fitnesses in homozygous and heterozygous condition do not 
lie in the appropriate region, while the new alleles will be maintained in the 
population if they have the appropriate fitnesses. Thus, although few new muta- 
tions may have the appropriate fitnesses, those that do will be accumulated, and 
it is these that we seen in nature. The findings on the distribution of allelic fre- 
quencies contradicts this hypothesis, however. Those fitnesses that do lead to 
equilibria create allelic frequency distributions that are nearly uniform, while 
the problem we are facing is to explain frequency distributions like those at the 
XDH locus, which are very asymmetrical. All of these conclusions are based 
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upon fitness values that are (1) independent of genotypic frequencies and (2) 
constant in time and space. It is a commonplace to suggest that frequency- 
dependent selection favoring rare genotypes might be responsible for a lot of 
balanced polymorphism. Like previous arguments about heterosis, this is based 
on an intuitive extension from the case of two alleles. The problem of frequency- 
dependent selection must be the subject of a separate study, but we would like 
to point out one feature of the present work that is relevant. Rare genotype 
advantage is a mechanism for promoting stability around an equilibrium point, 
but the actual solution vectors may lie outside the gene frequency simplex, that 
is be nonfeasible, just as in the constant fitness case. There is nothing a priori 
about frequency-dependent selection that suggests it will lead to feasible equi- 
libria more frequently (although it may, when investigated). But Table 3 shows 
that for higher numbers of alleles, feasibility is at least as great a problem as 
stability, and more than 90% of stable equilibria turn out to be nonfeasible. If 
the same phenomenon should occur for frequency-dependent selection, the 
situation will not be much improved. 

Variable selection in space and time is another question. Recently, GILLESPIE 
(1977) has shown that if there are many microniches available to a breeding 
population and if homozygotes differ in fitness from niche to niche, with hetero- 
zygotes even slightly more fit than the average of the homozygotes, a large 
amount of stable polymorphism can be maintained at a locus. Although his 
exposition contains an error in the conditions for stability (TULJAPURKAR 1977), 
this error does not affect the conclusion, and it is this kind of model that will 
probably be needed if a selectionist theory is to be maintained as a plausible 
explanation of observed allozyme polymorphism. 
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APPENDIX A 

The generation of random fitness arrays with fitness restrictions 
( 1 )  Total heterosis: I t  is trivial to generate random arrays subject to the 

restriction that all heterozygotes are more fit than all homozygotes. For n alleles 
there are n (n+ 1 ) / 2  genotypes, of which n are homozygotes and n (n-1 ) / 2  are 
heterozygotes. Using the usual method of pseudo-random number generation, 
n(n+1)/2 values between 0 and 1 are generated. The nth smallest in the list is 
identified and then the successive unordered random numbers in the list are 
assigned without replacement to a homozygote or a heterozygote, depending 
upon whether each number is less than or equal to, o r  greater than, the nth 
smallest. 

( 2 )  Pairwise heterosis: A set of fitness matrices that has the same distribution 
as if random matrices were generated, and then only those in which all hetero- 
zygotes were more fit than their component homozygotes were saved, can be 
efficiently generated as follows: The n ( n f l  ) / 2  pseudo-random fitnesses are 
ordered. A list of “eligible” genotypes is created. At the beginning of the cycle, 
only homozygotes are “eligible”. The smallest fitness is assigned to a randomly 
chosen eligible. Then the next smallest fitness is assigned to another eligible. 
Since these are both homozygotes, W,i and W j j ,  they identify a heterozygote Wij 
as a new eligible, and it is added to the list. The process goes on assigning fitnesses 
in order to random eligibles. If a heterozygote is chosen, it is simply removed 
from the list of eligibles. If it is a homozygote it is removed from the list but all 
heterozygotes between this homozygote and all the homozygotes previously 
removed from the eligibles list, are now added to the eligible list. The process is 
continued until all fitnesses have been assigned. 

A P P E N D I X  B 

Let p = an arbitrary vector of allele frequency 
p +  = point on the i,i boundary that maximizes fitness on that boundary 
p* = equilibrium vector inside the simplex 
W i  = Wi ( p )  = S. W i g j  = mean fitness of the ith allele at point p 
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W = W ( p )  mean fitness of the population at point p 
W*  = W(p*)  mean fitness of the population at equilibrium. 
It  has been shown by GINZBURG (1972) that 

and 

; p* Wi(P) =W* 
i=1 2. 

identically lor all vectors p .  
Subtracting W ( p )  from both sides of (1 1) yields 

n 

.E  <P,* - Pi> y ( P )  = W* - W(P)  * (12) 
2=1 

We then substitute the particular vector p+ remembering that at this 
point p’ + p f  = 1 and W i ( p + )  = W j ( p + )  = W ( p + ) ,  to find that 

n 
Subtracting W(p+)  z p* from both sides of (13), we obtain 

m#o m 
m# I 

n 

m=i f L  CW,(p+) - W(p+>l  = W* - W(P+) (14) 
m # %  m#i  

But since the right hand side of (14) is positive because the interior equi- 
librium fitness is a global maximum, at least one of the differences in the 
brackets on the left hand side must be positive. We then calculate that 
there must exist at least one k # i j ,  such that 

w k ( p + )  > W(P+> . (15) 
If we now evaluate W k ( p + )  and W ( p + ) ,  

(1 5) becomes 
W k i  (Wjj- Wjj) + Wkj (Wij - Wii) > W2. % I  - WiiWjj 

Solving expression (16) as a quadratic in Wij we obtain 

Wki + W k j  + V ( W k i i W k j  ) - 2 .  
2 wij < 

where Z = WkiWjj + WkjWii - WiiWjj . 
But we have already shown in section (a) that 

for any i # i, and using this in the definition of Z ,  Wii + Wjj 
2 

Wij > - 
we find that 

Z > W k k (  

can be written as 
Wij < W k i  + W k j  and the triangle inequality is proved. 

Wii + Wjj ) and so is necessarily positive. As a result (17) 


