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ABSTRACT 

An earlier paper showed that the homozygosity (of a population or sample) 
was a good statistic for testing departures from selective neutrality in the direc- 
tion of heterozygote advantage or disadvantage. It is here shown that homo- 
zygosity is also influenced by the presence of deleterious alleles and by other 
departures from neutrality, but a t  a lower order of magnitude of effect if the 
selection coefficients are of the same small order of magnitude. Tables are 
provided for the significance points and moments of the homozygosity, under 
the null hypothesis of neutrality. 

Section I .  

I N  a previous paper, WATTERSON (1977) ,  I showed that the homozygosity of a 
population, or of a sample, is a good statistic for testing the neutral hypothesis 

for alleles at a locus against the alternative of heterozygote advantage or dis- 
advantage. M. NEI (personal communication) suggested that the homozygosity 
would be considerably influenced by the presence of (additive) deleterious alleles, 
if such were present. It is a purpose of this paper to investigate the magnitude of 
the latter effect. We shall also consider the effect of other selection schemes. 
Finally, we shall tabulate some critical points in the distribution of homozygosity, 
for use in determining the significance of the departure of a sample’s homozy- 
gosity from expectation under the neutral alleles hypothesis. 

NEI and his colleagues have used the sample heterozygosity to estimate the 
mutation parameter, and then they have compared the observed variance of 
sample heterozygosities across different species with the theoretically predicted 
variance, assuming neutrality. See, for instance, FUERST, CHAKRABORTY and NEI 
(1977) .  The conclusions of the present paper are as follows: for detecting selec- 
tive differences between heterozygotes and homozygotes, or detecting the presence 
of deleterious alleles, the sample homozygosity (or heterozygosity) is a preferable 
statistic to use directly, rather than its variance. If both the heterozygote 
advantage (or disadvantage) on the one hand, and the additive effect of dele- 
terious alleles on the other, are small, the homozygosity is more influenced by 
the former departure from neutrality than by the latter. The same comment 
applies to other population and sample characteristics. 
Genetics 88:  405-417 February, 1978. 
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We note below that for testing departures from neutrality other than heterosis 
or additive deleterious alleles, it may be useful to consider sample statistics other 
than the homozygosity. 

The present study does not give as much detail on various series expansions as 
do the papers by WATTERSON (1977), concerning heterosis, or LI (1977) con- 
cerning deleterious alleles. 

Section 2. Population models with selection. 

2.1 The K-allele population: We start by assuming that there are K alleles 
possible at a particular locus, and subsequently consider the limiting case with 
infinitely many alleles (K-+m). Suppose that an individual of genotype AiAj 
has fitness 1 + sij. The mean fitness of the population with allele frequencies 

xl,xz,  . . . ,xK is defined by 
We suppose that each gene, of whatever allelic type, has a mutation rate U per 

generation, and the chance of a gene of type A; mutating to one of type Aj in 
particular is u/(K-l) for each j # i. The selection and mutation effects will be 
assumed to be small. In fact, we rescale the parameters according to 

K 
= 1 + ,E z sijxixj, assuming random mating. 

2,3=1 

aij = 2N,sij, E = 4Neu/(K-l) and @ =4Neu , (2.1) 
where Ne is the effective population size, and we hold U, E and @ fixed as N e 4 w .  
The stationary distribution for a diffusion model having these parameters is a 
special case of one which has been postulated by WRIGHT (1949, p. 383) and 
verified by KIMURA (1 956). It has the density 

over the domain 
K-1 

i=l 
0 < x1,xz7. . . 9XK-1 < 1 , 2 xj < 1 7 (2.3) 

and in which -zK 1-x1-x2-. . . - x ~ - ~ .  The normalizing constant is 
h- K 

CK = S. . .I exp ( F .  Z o i j r i ~ j )  (IIx;)€-'dX1 . . . dXK-1 , (2.4) 
the integral being over the region (2.3). 

Suppose for the moment that the mutation parameter E is known, but we desire 
to test for the presence of some selective effects against the null hypothesis of 
complete neutrality, oij = 0 for all i,j. Suppose also that it is not known which 
observed allele frequency corresponds to which selective effect (e.g., if some 
alleles are potentially deleterious, we do not know which alleles they are in our 
sample). The observed allele frequencies may be arranged as descending order 
statistics: 

2,1=1 

K 
~ ( 1 )  2 ~ ( 2 )  2 . . . 2 x ( K )  , wiih : ~ ( j )  = 1 , 

but it is not known how to assign selection coefficients to them. The likelihood 
of this data is 



the summation being over all possible permutations 

i 1 (i&, . . . ,iK) 
of the sequence (1,2,3, . . . ,K) . 

of ZZuijxixj and summing over the permutations i, that 
It is easy to check, by expanding out the exponential term in (2.2) in powers 

f~(z(i),x(z), . . . ,x(K-~)) =C-,1K! { I  +SiF + SZ(1-F) + % S3(1-6F + 3F2 + 8G - 6 H )  + 1/2 S4 ( F-F2 - 2G + 2 H )  
1/2 S5(F2-H) + i/e S,(G-H) + % S7H 

K + 0 (U3)>) (.n 2=1 z ( i ) ) c - - l  7 (2.5) 

where SI and S2 are 0 (U) , the order of any of the mi j :  

K 
SI=.z 2.=1 uii/Ky S2= F$uij /[K(K-l) l  

S, through S7 are 0 ( u2) : 

S a = ? ? X X  ui3 c~l lCK(K-1)  (K-2) (K-3)]  , 
VA 2 
all different 

S 4 = 2 t F f  ( ~ i i  ~ j k + 2 ~ i j  U im) / [K(K- l ) (K-2 ) ] ,  

all different 
S,  = Z X  (uiiugj + 2uij2)>[K(K-1)]  

i#i 
S e = 4 I ; Z  ui ja j j / [K(K- l )]  9 

i Sti 
S7 = uii2/K , 

and where 
K K IC 

1 
F = I; ~ ( i ) ~ ,  G = x(iI2,  H = Z ~ ( 4 ) ' .  

A similar expansion in (2.4) leads to the series for C K :  
&+I (K- l )& ( 1  +s,----- c -  - r ( K E )  K E + l  + S 2 K ~ + 1  

(K-I) (K-2) (K-3)e3 (K- I )  (K-2) (&+l)e2 '" ( K e S 3 )  ( K c f 2 )  (K&+l)  

'" (K&+3) ( K ~ f 2 )  (K&+l)  

'" ( K E + ~ )  ( K ~ f 2 )  ( K ~ f l )  

"' (Ke+3) (KES-2) ( K E + ~ )  
(K- I )  ( & + 1 ) 2 &  (K-I )  (&+2) (&+1)& 

+ 0 (u3)) . (&+3) (&+2) (&+I) 
+ ' " (K&+3) (K&+2) (Ke+I) 

Putting (2.5) and (2.6) together, it may be deduced that 

fK(Z(l),Z(2), - * - ,XW-l)) 
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+ ( $ , ( E  + 1 )  + S,(K - 1 ) & ) 2 /  (KE + 1 ) Z  

) (K-I)  (K-2) (K--3)&3 + i/e s3 ( 1  - 6F + 3F' + 8G - 6H - (K&+3)  (KE+2) (KE+l)  

-?-l/zS4 ( F - F 2 - 2 G + 2 H -  @-I) (K-2) (,+1)&2 
(KEf3)  (KE4-2) (KE+I) 

It s clear that if the selective parameters are all small, the first-order selec- 
tion term in the likelihood (2.7) most influences the ratio of the likelihood under 
selection, (2.7), to the likelihood under no selection. The statistic F, the homozy- 
gosity, is powerful to detect departures of S,  - S, from 0, using the usual likeli- 
hood-ratio method of test. In fact, multiplying both sides of (2.7) by F and 
integrating over all possible S(~),Z(,), . . . , x ( ~ - , )  values leads to the equation for 
the expected homozygosity: 

(2.8) E(F) =E(Flneutrality) + (S, - S,) Var(Flneutra1ity) + 0 (0,) , 
where the moments on the right are known (see, e.g., STEWART 1976), 

E(Flneutra1ity) = ( E  + ~ ) / ( K E  + 1 )  , 
and 

Var(Flneutra1ity) = 2(K- l )  (&+I)E/[  ( K d - 3 )  (Ke4-2) ( K E + ~ ) ~ ]  . 
We therefore conclude that F is a statistic helpful in detecting differences 

between the average fitness of homozygotes as measured by S, and the average 
fitness of heterozygotes as measured by S,. It was advocated for exactly this 
purpose in WATTERSON (1977) , in the special case when all homozygotes had the 
same fitness, and all heterozygotes had the same fitness, different from that of 
homozygotes. Considerably more detail was obtained for that situation. 

It can be seen from (2.7) that if the difference S,  - S, is not the major selective 
effect, then the higher order statistics G and H may be useful, as well as F, to 
detect departures from neutrality. 

In at least one other special case, the deleterious alleles case, F remains pre- 
eminent as test statistic. Suppose that L alleles A1,A,, . . . ,AL are fully fit, whereas 
the alleles . . ,AK are deleterious. We assume additivity in the sense that 
two deleterious alleles are twice as disadvantageous as one: 
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and 

u . . = - ~ u  23 if L < i , j ,  

where U is a measure of disadvantage carried by a single deleterious allele. We 
may substitute these values into the formulas for S, to S7, or what is perhaps 
easier, rework the problem from scratch, to obtain the likelihood 

fK(z(1),5(2)7 * * * 75(x-1)) 

Notice that in this situation, because S, = Sz due to there being no dominance, 
we find that the leading selection term is of order 0 (2) rather than 0 (.a). This 
may be contrasted with (2.5) in general, and in particular with the special case 
discussed by WATTERSON (1977) when all heterozygotes had the same advantage 
over all homozygotes, so that 

(2.11) uii = 0 , uij = U for all i # j . 
Then we find that S1 = 0 and S2 = U, so that 

fK(z ( I ) ,X(Z) ,  . . - ,X(K-l))  

The major difference between models having small heterozygote advantage, as 
in (2.12),  and slightly deleterious alleles, as in (2.10), is the replacement of U 

in the latter. If U < 1 in both cases, we see from in the former by -22 

(2.8), for instance, that the homozygosity will be much more influenced by 
heterozygote advantage (or disadvantage) than by deleterious alleles. And the 
same conclusion would apply to any other statistic which treats allele frequencies 
symmetrically (i.e., depends only on their order statistics). 

The distribution of F has been studied by STEWART (1976) in the case K = 3, 
assuming the mutation parameter E is known and that no selective differences 
operate. By conditioning on the observed value of ,n z(i), WATTERSON and 
PERLOW (1978) have found the distribution of F undei%e null hypothesis of no 
selection, free of the nuisance parameter E ,  again in the case K = 3.  

2.2 The infinitely many alleles model: Letting K 4 00 and E + 0 in such a way 
that 0 andKthe uij remain fixed, we find for instance that (2.8) remains true with 
SI = lim Zuii/K, S2 =lim ZZai i / [K(K- l ) ] ,  and with 

L (K-L) 
K ( K - I )  

K 

K + m  1 K+ w 4#j' 

E(Flneutra1ity) = I / ( @  + 1 )  
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and 

Var(Pjneutra1ity) = 2@/[ (@+3) (@+2) . 
We shall, from now on, concentrate our attention on the neutral alleles case, the 
simple heterozygotte advantage (or disadvantage) case (2.1 1) , and the simple 
deleterious alleles case (2.9). In the latter case, suppose that the proportion of 
deleterious alleles converges to (Y as K+m, that is 

K-L - 
lim -- ff. 

E + m  K 

Then the correspondence between the alternative hypothesis models is that U 
(for heterosis) is replaced in formulas by -2u2a(1 --a) in the deleterious case, 
at least in the leading selection term. Some examples will now be given. 

In WATTERSON [1977, (3.1.11)], it was found that heterosis in the infinitely 
many alleles model led to a frequency spectrum in the population described by 

+(x) = 0z-~(l--r)~-~{l+~x[2-(2+@)z]/(l+@)+O(~~)} for 0 < x < 1 ,  

which may now be transcribed for the deleterious alleles model to read 

= ~ ~ ~ ( 1 - ~ ) ~ - ~ ~ 1 - - 2 ~ ~ ~ ( 1 - ~ ) ~ [ 2 - ~ ~ + ~ ) ~ ~ / ( i + ~ )  + 0(~3) 1 , 
for O < x < l  . 

Thus the possibility of deleterious alleles tends to decrease the number of alleles 
having frequencies z below 2/(2+@), and to increase those having frequencies x 
above 2/(2+0), compared with the neutral model. One might have expected 
deleterious alleles to boost the number of low-frequency alleles. 

The expected number of alleles, K ,  say, whose frequencies are above some 
small threshold value g ,  was given in WATTERSON [1977, (3.2.1)] as 

E&) @ z - ~ ( l - - z ) ~ - ~ d z + u O / ( l + ~ ) ~  + O ( d )  

for the heterosis model. For deleterious alleles, we obtain instead 

E ( K , )  = Ji ~z-l(i--z)~-l~x- 2,2,(1-,)O/(1+@)2 + 0(~3) . 
Deleterious alleles tend to decrease the number of alleles of frequency above g ,  
compared with a neutral allele model. 

Section 3 .  Sample statistics. 

We now discuss the effect of deleterious alleles on the composition of a sample 
of n genes, chosen at random from the population (2.10), or from the corre- 
sponding infinitely many alleles population. 

A sample may contain a random number of alleles; we denote the number 
by IC, and the numbers of genes of those various alleles by n,,n,, . . . ,nk. Indeed, 
as it is the “unlabeled”, or the “configuration” aspects of the sample which are 
of interest, we shall assume the allele numbers are arranged in decreasing order: 
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nl > n2 P .. . > n k  > 0 . 
The sample homozygosity (calculated from observed allele frequencies rather 
than from observed homozygote frequencies) is 

k 

and we shall denote by ai the number of alleles that have j copies in the sample, 
n n n 

The probability of observing such a sample in the heterosis case was given by 
WATTERSON [1977, (4.1.4)] as 

Pr(k;nl,nz,. . . , n k )  = 
n! [r (KE) /r (n+K&) I 

a,!a,! . . . a,! 
k 

2=1 
[K!/( K-k) !P ( E )  ] [ ,II (r (ni+E) /ni!) ] { I + u A ~ + O  (U') } , (3.1 1 

where 

Ag [ (I+E)/(I+KE)] - [ ~ ' E + ~ ( ~ E + ~ ) + K E ( E + I ) ] / ( ~ + K E )  (n+lfK&) . 
In view of the remarks made in the previous section, (3.1) remains valid for the 

, andO(u2) byO(u3). deleterious alleles model if we replace U by -2u2 

Thus E is clearly the appropriate statistic for testing for small departures from 
neutrality in any of the cases of heterozygote advantage, heterozygote disad- 
vantage, or deleterious alleles. 

L (K-L) 
K(K-I) 

In the infinitely many alleles version, (3.1) reduces to 

@k{ 1 +uA+O (UZ) } , (3.2) 

where 

A = n[l/(l+@)-&'/(n+@)]/(n+l+@) . 
The deleterious alleles version of (3.2) is obtained by replacing U by -2u'a ( 1 ---a), 
and O(u2)  by O(u3),  Again, P is clearly a suitable test statistic for detecting 
departures from neutrality in either case. We tabulate P's distribution in Section 
4,  conditional on a given value of k (which removes dependence on the nuisance 
parameter 0, assuming the neutral hypothesis is true). 

Among the results obtained in WATTERSON (1977) that may be adapted to the 
deleterious alleles case, we quote the following two. Other results may be simi- 
larly adapted. 

From (3.2), it may be shown [cf. WATTERSON 1977, (4.2.9)l that 
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n-1 

z =O 
E ( k )  = o ,E (@+i)-I  + u@n(n-1)/(1+@)2(n+@) (n+l+@) 

+ O ( d  , 
which in the deleterious alleles context is replaced by 

~ ( k )  = 0 :iil ( ~ + i > - l -  2u2,(l--a)On(n-l)/(1+0)2(n+0) (n+l+o) 
r=o 

+ 0 ( ~ 3 )  . 
Hence we may conclude that the presence of slightly deleterious alleles tends to 
reduce the number of different alleles observed in a sample, compared with the 
neutral case. 

For the testing of neutrality using E conditional on a given k, WATTERSON 
[1977, (4.2.6)] found that the sample likelihood under heterozygote advantage is 

{ l-&+O(u2) } (3.3) n! 
a,!az! . . . cun!nlnz . . . nklSn(k)l Pr(n1,n2,. . . ,nklk) = 

where 
n2 1 

(n+o) ( n + l + ~ )  n C =  

where S,(k) is a Stirling number of the first kind, and where 

is the expected value of E under neutrality, E(EIk,u = 0) .  The corresponding 
likelihood for deleterious alleles is, as usual, obtained by replacing U by -20% 
(1 - a) , and 0 (a2) by O(u3) , in (3.3). We see in either case that the likelihood 
ratio test, comparing the likelihood with selection with the likelihood when U 0, 
is most influenced by the quantity C, or equivalently, by the departure of 
from its null hypothesis mean. 

Under heterozygote advantage, the expected value of 1: is, from (3.3) , 
E ( P l k )  = E(13jk,~=O) - unzVar(E/k,~=O)/(n+@) (n+l+@) 

+ O ( 4  7 

which reads in the deleterious alleles context: 

E(E1k) = E(Plk,u=O) 
+ 2u2~(l-~)n2Var(E~k,u=O)/(n+~) (n+l+@) + O(u3)  , 

showing that deleterious alleles tend to increase the value of E, conditional on k. 
The moments of E, conditional on k and on U = 0, were given explicitly in 
WATTERSON (1977) in terms of complicated functions of Stirling numbers of the 
first kind. See also Tables 2 and 3 below. 
Section 4.  Significance points for the P statistic. 

Suppose that a sample of n genes contains k different alleles. The null hypothe- 
sis (neutral allele) distribution of the sample order statistics may be obtained 
from (3.2) as 
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Pr(k;nl,nz, . . . , n k )  = 
n!Ok r ( 0 )  /r (n+o) 

a,!a,! . . . an!nlnz. . . n k  

and, conditional on k being given, from (3.3) as 

/IS,ck’ I (4.1) 
n! 

a,!a,! . . . an!n1n2.. . n k  
Pr(n,,nz,. . . nklk) = 

EWENS (1972) was the first to obtain these distributions and to observe that (4.1) 
is free of the nuisance parameter O, the scaled mutation rate. The sample homo- 
zygosity, P ,  conditional on given values of k and n, has a distribution that may 
be computed from (4.1) using much computer time or, more quickly, by simu- 
lation. Following EWENS (1972) , KIRBY (1975), and STEWART (appendix to 
FUERST, CHAKRABORTY and NEI 1977), it is easy to generate samples having 
(4.1) as distribution, and hence to obtain the distribution, moments, etc. of 
sample statistics by simulation. In Figure 1, we show the frequency polygons of 
the distributions of E for k = 2, 5 and 10 combined with n =50 and n = 500, 
obtained by simulation using 1000 samples each. 

In Table 1, we give a more extensive tabulation of significance points for the 
E distribution, conservative in the sense that for 1%, 2.5%, 5%, 10% and 50%, 
no more than those proportions were observed at or below the tabulated I3 value; 
for the 90%, 95%, 97.5% and 99% points, no fewer than those proportions were 

TABLE 1 

Conservative % points for neuiral $, by simulation if k > 2 

k n  Fmi, 1 2.5 5 10 50 90 95 97.5 99 F,,, 

2 50 
100 
200 
500 

3 50 
100 
200 
500 

5 50 
100 
200 
500 

7 50 
100 
200 
500 

10 50 
100 
200 
501) 

0.5000 0.5000 0.5000 0.5032 0.5200 0.7880 - - - - 
0.5000 0.5000 0.5008 0.5050 0.5288 0.8528 - - - -  
0.5000 0.5002 0.5018 0.5098 0.5392 0.8361 - _ - -  
0.5000 0.5004 0.5032 0.5135 0.5525 0.9344 - - - - 
0.33 0.34 0.35 0.37 0.41 0.62 0.89 - - - 
0.33 0.34 0.37 0.40 0.44 0.67 0.96 0.96 - - 
0.33 0.34 0.37 0.40 0.46 0.68 0.95 0.98 - - 
0.33 0.36 0.39 0.44 0.48 0.76 0.98 0.99 0.93 - 

0.20 0.23 0.25 0.26 0.28 0.41 0.66 0.69 0.78 0.82 
0.20 0.24 0.26 0.28 0.30 0.44 0.73 0.80 0.84 0.89 
0.20 0.25 0.28 0.30 0.32 0.49 0.80, 0.85 0.90 01.92 
0.20 0.26 0.30 0.33 0.35 0.53 0.87 0.92 0.95 0.97 
0.14 0.18 0.18 0.20 0.21 0.29 0.46 0.54 0.57 0.64 
0.14 0.19 0.20 0.22 0.24 0.34 0.57 0.66 0.72 0.81 
0.14 0.20 0.22 0.23 0.25 0.33 0.65 0.74 0.79 0.83 
0.14 0.21 0.23 0.25 0.28 0.43 0.73 0.81 0.86 0.91 
0.10 0.13 0.13 0.14 0.15 0.21 0.30 0.36 0.41 0.48 
0.10 0.14 0.15 0.16 0.17 0.25 0.40 0.45 0.50 0.54 
0.10 0.15 0.16 0.18 0.19 0.28 0.43 0.55 0.62 0.68 
0.10 0.17 0.18 0.20 0.22 0.33 0.56 0.66 0.72 0.81 

0.9608 
0.9802 
0.99005 
0.996008 
0.9224 
0.9606 
0.98015 
0.992024 
0.848 
0.922 
0.9605 
0.98408 
0.7768 
0.8842 
0.94105 
0.976168 
0.676 
0.829 
0.91225 
0.96436 

- denotes significance level not passible. 
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.20 - 

0 
0 0 5  

.04 

0 I 

k.5, n=500 

0 0.5 1.0 0 0.5 1.0 

k.10, n=500 

FIGURE 1.-Frequency polygoiis for the distribution of F .  

observed below the tabulated E value. Again, the table is based on 1000 samples 
for each k, n combination except that the k = 2 cases are by analytic compu- 
tation, not simulation. We have also listed the lowest possible, and highest 
possible, E value. P is minimum in samples in which all alleles are equally 
represented (and then P = k-l) ; of course this may not be possible exactly if  n 
is not divisible by k. The maximum P value is achieved when k-I alleles have 
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TABLE 2 

Mean of e; exact (simulation) 

k 50 
n 

100 200 500 

2 0.7812 
(0.7786) 

3 0.6302 
(0.6402) 

5 0.4388 
(0.4396) 

(0.321 1) 
10 0.2242 

(0.2227) 

7 0.3253 

0.8088 
(0.8095) 
0.6714 

(0.6804) 
0.4895 

(0.4813) 
0.3764 

(0.3788) 
0.2714 

(0.2708) 

0.8306 
(0.8264) 
0.7048 

(0.6924) 
0.5322 

(0.5275) 
0.4207 

(0.4225) 
0.3134 

(0.3156) 

0.8530 
(0.8495) 
0.7401 

(0.7379) 
0.5789 

(0.5771) 
0.4704. 

(0.4746) 
0.3620 

(0.3660) 

relative frequency l/n each, and one allele has relative frequency 1 - (k-1 ) /n. 
Then P = (k-I) n-2 f (1- (k-I ) / n )  z. For some (k,n) combinations, even the 
most extreme F values are not statistically significant, because even under the 
null hypothesis they were found to occur in frequencies in excess of the desired 
significance level. 

In Tables 2 and 3 we exhibit the means and variances of P under the neutrality 
hypothesis; the exact values were obtained by computing (4.3.7) and (4.3.9) in 
WATTERSON (1977); the simulation values are based on 1000 samples in each 
case. Except possibly for the k = 7, n = 50 and k = IO, n = 100 variances, the 
simulation results agree very closely with the theoretical values. 

TABLE 3 

A 

Variance of F; exact (simulation) 

n 
k 50 100 200 500 

2 0.0265 0.0278 0.0281 0.0275 
(0.0261) (0.02234) (0.0287) (0.0270) 

3 0.0283 0.0325 0.0350 0.0366 
(0.0293) (0.0334) (0.0350) (0.03 68) 

5 0.0189 0.0254 0.0306 0.0356 
(0.0182) (0.0244) (0.0289) (0.0342) 

7 0.0110 0.01 69 0.0224 0.0286 
(0.0096) (0.01 75) (0.0220) (0.0282) 

10 0.004.8 0.0083 0.0133 0.0190 
(0.0047) (0.0080) (0.0131) ( 0.01 96) 
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Some numerical examples were quoted in WATTERSON (1977) for Drosophila 
samples and we repeat them here. In Table 4 we show the sample sizes, n, the 
numbers of alleles, k, the homozygosities, E,  the tail-probabilities of getting a 
more extreme E value, P (calculated exactly in WATTERSON 1977), the normal 
approximations to those tail probabilities, P,,,,, and the simulation tail proba- 
bilities, Psim (based on the actual k , n values, each simulation consisting of 
1000 replicates). The simulation probabilities are consistent with those obtained 
by interpolating in Table 1. 

The virtue of using simulated distributions is in respect of computer time. The 
simulated one-sided significance levels in Table 4 are in good agreement with 
the true values, where known, and indicate possible departures from neutrality 
in three of the four species. For the simulans sample, however, we had not pre- 
viously obtained even the exact tail probability due to computer time limitations, 
whereas it may be simulated in approximately half a minute on a B6700, using 
1000 samples. 

We might interpret the data in Table 4 as perhaps indicating the presence of 
heterozygote advantage in simulans, and the presence of heterozygote disad- 
vantage or  of deleterious alleles in the willistoni and equinoxalis samples. How- 
ever, as is usual in this work, there may be other reasons for samples to deviate 
from the neutral distribution, such as nonstationarity of the population compo- 
sition, indistinguishability of different alleles, etc. 

I thank MRS. M. Wu for help with computing, and Professor M. NEI for pointing out the 
possibility of deleterious alleles influencing homozygosity. 
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