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ABSTRACT 

A two-site inf i i te  allele model is constructed to study the effect of intra- 
genic recombination on the number of neutral alleles and the distribution of 
their frequencies in a fiiite population. The results of theory and Monte Carlo 
simulation of the two-site model demonstrate that intragenic recombination 
significantly increases the mean and variance of the number of alleles when 
the rates of mutation and recombination are as large as the reciprocal of the 
population size. Data from natural populations indicate that this may be a 
significant process in generating variation and determining its distribution. 

T has been known for some time that intragenic recombination might be as 
'powerful an agent for generating new variation as is mutation (WATT 1972). 
In addition, KOEHN and EANES (1976) conjectured that such a process would 
maintain a number of rare alleles in excess of that predicted by neutral allele 
theory alone. The belief in what is called the classical view of evolution (LEWON- 
TIN 1974) probably accounts for a lack of interest among population geneticists 
in intragenic recombination; for if the population is homozygous at most loci, 
then intragenic recombination has no effect. Although it was known that a large 
amount of genetic variation might not be detected by electrophoretic surveys of 
natural populations (LEWONTIN and HUBBY 1966), it is just now becoming clear 
how much variation is concealed (COYNE 1976; SINGH, LEWONTIN and FELTON 
1976). 

If there exists a large amount of variation, intragenic recombination would be 
important in population genetics only if the rate is large enough to be an effective 
means of generating additional variation. Therefore, it is important to know what 
rate of intragenic recombination is required to generate an increased amount 
of variation in a finite population. Furthermore, even if intragenic recombination 
generates an increased amount of variation, it must be shown that the effect of 
intragenic recombination is qualitatively different from that of an increased 
mutation rate. Therefore, it is important to know what the distribution of allele 
frequencies is in a population in which intragenic recombination is an important 
source of variation. 

Intragenic recombination can occur both by crossing over and by a non- 
* This work was supported by National Research Council of Canada, Grant No. A0502. 

Genetics 88: 829-844. April, 1978. 



830 C. STROBECK .4ND K. MORGAN 

reciprocal process, gene conversion. If gene conversion is not symmetric, then 
it acts almost like meiotic drive (GUTZ and LESLIE 1976). If gene conversion is 
symmetric, it can be thought of as a reduced rate of reciprocal recombination 
from a population point of view. Since the interest here is to determine the rate 
of intragenic recombination necessary to increase the number of alleles and 
affect the distribution of alleles, it is assumed throughout this paper that gene 
conversion is symmetric. 

A model of intragenic recombination with a large number of sites at which 
mutation can occur is probably impossible to construct. However, many of the 
above question can be answered by using a two-site model. If intragenic recom- 
bination is symmetric, then such a model is equivalent to a two-locus model with 
each locus considered as a mutable site and each gametic type as a different 
allele. 

THEORY 

The two-site model used is equivalenl to the infinite allele (KIMURA and CROW 
1964) two-locus model of random union of gametes (KARLIN and MCGREGOR 
1968). It assumes a finite population of 2N gametes. In order to generate a 
gamete in the next generation, two gametes are selected at random with replace- 
ment from the existing 2N gametes. For any two arbitrary gametes denoted by 
albl and azbz, one of the four meiotic products albl, alb2, azbl, and azb, is selected 
with probability x ( l - r ) ,  xr, x r ,  and % (1-r), respectively, where r is the 
recombination value. This process is then repeated until 2N new gametes have 
been generated. 

Five inbreeding coefficients or descent measures are needed to describe the 
behavior of the system from one generation to the next. Three of the inbreeding 
coefficients involve two gametes chosen at random without replacement from the 
2N gametes; one coefficient with three gametes; and one coefficient with four 
gametes. If an arbitrary gamete is denoted by a,b,, then the five inbreeding 
coefficients are: 
For two gametes a, b, (i=l,2) : 

@ A  = P(al=az) = Probability a, is identical by descent to az 
@B P(bl=bz) = Probability b, is identical by descent to b, 
@AB = P(al=az, b,-b,) = Probability a, is identical by descent to az and b, 

is identical by descent to bz 
For three gametes a, b, (i=l,2,3) : 

rAB = P(al=az, b,=b3) = Probability al is identical by descent to a, and bl 
is identical by descent to b3 

For four gametes a,bz (i=1,2,3,4) : 
&n = P(al=&, b,=b,) = Probability a, is identical by descent to a3 and b, 

These are the same five variables that have been used for the two-locus model 
with random mating of zygotes (WEIR and COCKERHAM 1974; SERANT 1974). 

is identical by descent to b, 
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I f  there is no mutation, the recurrence equations for the five inbreeding 
coefficients are: 

A=.--.-.- ' {2N + 2(2N-I)  (@A+@B+@AB) 
( 2 N )  + (2N-1) (2N-2) ( @ k + @ B + 4 r A B )  + (2N-I)  (2N-2) ( ~ N - ~ ) A A B }  

which can be obtained from Table 1 and Table 2. 
The equilibrium values of the five inbreeding coefficients are 

A A A A 

@ A = @ B = @ * B = r A B = , A A B =  1 
if there is no mutation; that is, the population is homozygous at both sites. The 

TABLE 1 

The probability of occurrence and the value of the inbreeding coefficient for each arrangement of 
three gametes randomly sampled with replacement from a population of 

2N gametes (a, P, and y are different gametes) 

Arrangement 
0 * 

1 3 Probability P (a,=a,,b,=b,) 

a 1 

a 4N2 

2N--1 P 
a 4N2 

a 1 ___ 

a * A  __- 

a 2N-I --_ a! 
P 4" 

P 
P 

a 
2N-1 -__ 

4N2 ' A X  

(2N--1) (2N-2) 
a -  AB P 

Y 4N2 
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TABLE 2 

The probability of occurrence and the value of the inbreeding coefficient for each arrangement of 
four gametes randomly sampled with replacement from a population of 

2N gametes (,U, P, y, and 6 are different gametes) 

Arrangement (s) 

1 3 Probability P(al=a3,b2 E b4) 
2 4 

1 
1 

f f a  -- 
f f f f  8N3 

f f f f  

P P  
2N--1 

8N3 
1 

~ 

P f f  2N-1 
*A 

*B 

a P  
a f f  f f f f  4N3 

f f f f  f f f f  2N-1 
f f P  P f f  4N3 

f f P  
f f P  

f f B  
P f f  

2N-1 
4N3 

(2N-1) (2N-2) 
*A -- P Y  

f f f f  8N3 

ff 'U 

P Y  
(2N-I)  (2N-2) 

8N3 

a y  

P f f  

Y "  

P f f  

(2N--1) (2N-2) --- 
2N3 FAB 

f f Y  Y f f  

(W--1) (2N-2) (2N-3) 
AAB 

a P  - 
Y 6  8N3 

rate to homozygosity is I-&,, where A,, is the largest eigenvalue of the Jacobian 
evaluated at this equilibrium. The eigenvalues are: 

1 A 1 = X p = l  -- 
2N 

and A,, X4, and A, are ( 1  - L) times the roots of the cubic equation 2N 
2 ~ 3 x 3  - 
N ( 2NZr2-6N2r+6N2-2Nr2+8Nr-7N+r2-4r-l-3) x2 -I- (21 
(1-r) (N-I ) (2N2r2-6N2r+6N2-4Nr2+9Nr-88N+12-3rrf3) x - 
(1 - r )3 (N-1)2 (2N-3)  = 0 

which is the same polynomial as equations ( 1 6 )  and (17)  in KARLIN and 
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MCGREGOR (1968). They have shown that the largest root of equation (2 )  

decreases from ( I  -&) to (1 - &)' as r varies from 0 to 1. 

Therefore the largest eigenvalue is io = ( 1 - -) , 

If the mutation rate at each of the two sites is v and each mutation is unique 
(the infinite allele model of KIMURA and CROW, 1964), then the recurrence 
equations are: 

1 

@ ~ ~ ' = ( l - V ) ~ ( ( l - r ) ' [ - $ .  1  AB] 1 +2r(I-r)I '+r2A} ( 3 )  
2N 

r A B ' =  ( i - V ) ' [ ( i - T ) I '  +TA]  

AAB' = (1 - v ) ~ A  

where r and A are as defined above. The equilibrium values can be obtained 
using Cramer's rule. Three different cases are considered: 

1. N > > I ,  v = O ( $ ) ,  a n d r < < v  

A 1 
1 +4Nv 

$A 

A 1 
@B 1 + 4Nv ( 4 )  

A 1 
@AB 

A 3 + 20Nv 
1 + 8Nv 

( 1  + 4Nv) ( 1  + 8Nv) ( 3  + 8Nv) TAB 

A 9 + 72Nv + 64N2v2 
( 1  + 4Nv) (1 + 8Nv) ( 3  + 4Nv) ( 3  + 8Nv) AAB 

2. N > > I ,  v = ~ ( $ ) ,  r z v  

A 1 
1 +4Nv 

1 
1 + 4Nv 

$A 

A 

@B ( 5 )  

A 128Navaf32NBv2r+l 76Nava+48Navr+8NY+72Nv+26Nr+9 
@AB ( 1 +4Nv) (256Wv8+l 92N"v'r+3~Navt+320NZvZ+ 152NZvr+8N2P+ 108Nv+26Nr+9) 

80~va+4.8Navr+8Nar2+72Nv+26Nr+9 
(1+4Nv) (256NBv8+l ~N8v2r+3~N"vr2~3~olvZvZ+152Navr+8NY+ 1 0 8 N v f 2 6 N r f 9 )  r A B  
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64.N2vvZ+~N2vrf8N2~-2+72Nv-2+26Nr+9 
( I f 4 N v )  (256N3u3+192N3~2r+32N3vyZ+320N’v2+152N2vr+8N*re+ 108Nv+26Nr+S) AAB 

3. N > > I ,  . - o ( $ ) ,  r > > v  

A 1 
@ A  - 

1 + 4 N v  
* 1 

1 + 4 N v  
@B e 

n 1 
@AB 

A 1 

- 
(1 + 4Nv)’ 

(1 + 4Nv)2 r A B  

A 1 
AAB (1 + 4Nv)’ 

Since in all three cases it is assumed that N >> 1, these results are the same as 
those obtained by SERANT (1974)  for the two-locus model with random mating 
of zygotes. 

HILL (1975) used the two-locus infinite allele model with random union of 
gametes to study linkage disequilibrium in a finite population. The results in 
equation (1 0) of HILL and the results in ( 5 )  of this paper can be obtained from 
each other by a linear transformation. This is true since, if N is large, then: 

@A 1 - H A  1 - Z pipj 

@B 1 - H B  = 1 - Z qiqj 

3. f Z i j  = 3, (p iq j  + Dij)’ 

1 8- HA - HB + H A H B  + 2.2. PiqjDij + 3, D’ij 

i#j  

i#i 

@AB 
%,I  2.J 

$ , I  2 . 1  

 AB f j P i q j f i j  =? piqj  ( p i q i  +Dii) 

= 1 - H A  - H B  + H A H B  + 3, PiqjDij 
$91 

where pi is the frequency of the ith allele at the A locus, qj is the frequency of 
the ith allele at the B locus and f i j  = piqj + Dij is the frequency of the gamete 
containing the itb allele at the A locus and the ith allele at the B lolcus. 

The total mutation rate of the gene for the model of intragenic recombination 

is ,p = 2 v  and, therefore, the effective number of alleles is ne = - . meeffective 

number of alleles for N >> 1 and p 0 (A) is: 
@AB 

1 +4Np if r < < p  
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(1  +2Nr) 
if I' p (7) 

if r >> p. 

The effective number of alleles for various values od Np, and for several values 
of the ratio of p to I is plotted in Figure 1. It is seen that: 
(1) The effect of intragenic recombination increases as N p  increases; 
(2) for small values of Np,  there is essentially no effect; and 

"e 

25 

20 

15 

10 

5 

0 1  I 

0 0.5 1 .o 1.5 2.0 

FIGURE 1.-The effective number of alleles for the two-site infinite allele model with 
intragenic recombination. 
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( 3 )  a recombination value of the same order of magnitude as the mutation rate 
can have a large effect even for moderate values oif N p .  

M O N T E  CARLO SIMULATION 

Since the effective number of alleles is a function of both the number of alleles 
and their frequencies, the increase in the effective number of alleles shown in 
Figure 1 might conceal a much greater change in the number of alleles. In order 
to derive the formulas for the mean and variance of the number of alleles and 
the variance of the homozygosity, the distribution of allelic frequencies is 
required. Because we are unable to obtain a formula for the allelic distribution, 
a Monte Carlo simulation of the model for intragenic recombination was 
undertaken. 

In the Monte Carlo simulation, five pseudo-random numbers are used to gen- 
erate each new gamete from the existing gametes. Two are used to select two 
parental gametes from the 2N existing gametes with replacement, one is used 
to determine which one of the four meiotic products is selected, and two are used 
to determine if a mutation occurs at each of the two mutable sites. This sequence 
is then repeated until 2N new gametes are selected, which then become the 2N 
gametes in the next generation. 

For each run, the initial population was assumed to consist entirely of one 
allele. In order to insure that we were sampling from a stationary process, the 
first sample recorded was the 12Nth generation. Also to insure that the covariance 
between consecutive samples was minimal, the samples were taken 2N genera- 
tions apart. For each sample the number of alleles and their frequencies were 
recorded. A total of 95 samples were analyzed for each run. 

Two population sizes were used: 2N = 100 and 2N = 200. For each population 
size runs were made with 4Np = I and 4Np =4 (,p=2v = 0.005 and 
p = 2v = 0.02 for 2N = 100; p = 2 v  = 0.0025 and p = 2 v  = 0.01 for 2N = 200). 
For each combination of population size and mutation rate, five different recom- 
bination values were used: I = 0, r = p ,  I = 2p, r- = 5 p ,  and I = lop. Small values 
of the population size were chosen in the interest of economy for computer 
simulation, although they imply unrealistically high rates of mutation and 
intragenic recombination. Two replicate runs were made of each of the twenty 
combinations of population size, mutation rate, and recombination value. 

The number of alleles and their frequencies at each of the two sites were also 
recorded for each of the 95 samples in every run. These data can be used as an 
internal check to see if the simulations are giving results that approximate those 
expected from the sampling theory of selectively neutral alleles (EWENS 1972). 
Although the simulations provide estimates of the population parameters, we 
choose to compare them to the sample statistics, with R = N ,  for the mean and 
variance of the number k of alleles present in any generation, as was done by 
EWENS and GILLESPIE (1974) in their neutral allele simulations. In Figure 2, 
the histograms for the observed and expected distributions of the number of 
alleles at one of the sites are shown for the four cases: ( 1 )  2N = 100 and 
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1 I 2N = 100 
g 240 
P 
E ' 160 
O 
W 
Q 
E 80 
3 z 

Y- 

L 

0 

2N = 100 
v = 0.01 

1 2N = 200 1 2N = 200 
v) 240 v = 0.00125 W - 
E 
3 160 
0 

W 
Q 

3 

Lc 

L 

E 80 
z 

0 
1 5 10 

v = 0.005 

1 5 10 15 20 

Number of Alleles 
FIGURE 2.-Results of Monte Carlo simulation of the one-site infinite allele model. Frequency 

distribution of number of alleles: observed-shaded bars; expected-solid bars. 

9=4Nv=0.5;  (2) 2N=lOOand9=4Nv=2; (3) 2N=200and9=4Nv=0.5; 
and (4) 2N = 200 and 9 = 4Nv = 2. For each of the four cases there are 950 
samples (95 samples from 10 runs). The expected distribution was obtained 
using the program given in Appendix 3 of EWENS (1972). In each case it is seen 
that there is close agreement between the expected and observed distributions. 

In Table 3 the mean and variance of the number of alleles for the gene (two- 
site) in each run are shown. For I" = 0, the expected sample mean and variance 
of the number of alleles are (EWENS 1972) : 

Case 
2N=100 e = 4 ~ ~ = i  

2N=200 e = 4 ~ ~ = i  
2N=100 8=4Np=4 

2N=200 9=4Np=4 

Mean Variance 
5.19 3.55 

13.53 9.15 
5.88 4.24 

16.24 11.78 

Except for  the runs with I" = 0, there is no theory to which these values can be 
compared. However, some important observations can be made from these data. 
It is seen that the mean number of alleles increases with increasing I". With 
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4Np = 1, there is only a slight increase in the number of alleles with increasing 
r, while with 4Iv;p = 4 the increase is dramatic. Second, especially with 4Np = 4, 
the variance increases much faster than the mean. In fact, the ratio of the vari- 
ance to the mean becomes much greater than one. From the equation for the 
sample variance in EWENS (equation 24; 1972), it is easily seen that the ratio 
of the sample variance to the sample mean for neutral alleles is always less than 
one. This indicates that the sampling theory of selectively neutral alleles does 
not apply to the case of intragenic recombination. 

In Table 4, the mean and variance of the homozygosity is shown for each run. 
Homozygosity is calculated as Z p i 2 ,  where pi is the frequency of the ith allele. 
Expected values of the homoz;gosity are given by iAB in equations (4), ( 5 )  
and (6) .  The expected values for the two-site model for  the 10 cases are given 
in Table 5. It is seen in Table 6 that the simulations are in good agreement with 
the expected values, although the observed values are consistently slightly larger 
than expected. In order to show that the distribution of alleles is not that pre- 
dicted by the theory of neutral alleles, the observed variances of the homozygos- 
ity have been compared to those expected for selectively neutral alleles 

with 0 = 4Np (WATTERSON 1974; STEWART 1976; KINGMAN 1977). Since 
0 = 4 N p  is only appropriate when I = 0, the formula above was used with 
0 = ne-1, where the value of ne is given by equations (7 ) .  Values of the vari- 
ances calculated by equation (8) are given in Table 5. The ratio of the observed 
variance to the expected variance for each run is given in Table 6. Especially for 
4&=4, the ratio of the observed variance to that expected increases as r 
increases. KINGMAN (1977) has proved that whenever the distribution of alleles 
is that of EWENS’ sampling theory, then the homozygosity must have the vari- 

TABLE 5 

Mean homozygosity culculuted from the two-site model and variance of homozygosity 
calculated from the one-site model (see text) 

Recombination Mean Variance 
4Np rate (two-site) (one-site) 

1 .o r = O  
r = p  
r = 2p 
r = 5,p 
r = lop 

4.0 r = O  
r = p  
r = Z p  
r = 5p 
r = lop 

0.5 
0.4847 
0.4758 
0.4629 
0.4552 

0.2 
0.1633 
0.1477 
0.1301 
0.1215 

0.0417 
0.0401 
0.0392 
0.0378 
0.037 

0.00762 
O.odM.72 
0.00369 
0.00269 
0.00226 
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ance given by equation (8). These comparisons clearly demonstrate that the 
sampling theory of neutral alleles with intragenic recombination is not the same 
as the theory that assumes no intragenic recombination. 

DISCUSSION 

It has been demonstrated that intragenic recombination can significantly 
affect the number of neutral alleles and their distribution in a finite population. 
The requirements are that the rate of recombination be equal to or greater than 
the mutation rate, and the mutation rate be at  least the same order of magnitude 
as the reciprocal of the population size. For example, when 4Np = 4 and r = lo@, 
the effective number and the mean number of alleles are approximately twice 
as large as would be expected if there were no intragenic recombination. In addi- 
tion, the variance of the number of alleles and the variance of the homozygosity 
are at least twice as large as would be expected. 

By comparing data from natural populations to the results from the Monte 
Carlo simulation and the analytical theory developed in the preceding sections, 
it is possible to decide whether or not this process plays an important role in 
natural populations. Therefore, it is necessary to compare known intragenic 
recombination rates to mutation rates and also to show that 4Np, for at least 
some loci, is large enough for intragenic recombination to have an effect. 

The rates of intragenic recombination have been estimated in several organ- 
isms. Data available for Drosophila should be representative. For the rudimen- 
tary locus, CARLSON (1971 ) has estimated that recombination varies between 
7.6 X depending on which alleles are being used. At the rosy 
locus, CHOVNICK, BALLANTYNE and HOLM (1971) found that the recombination 
rate for null alleles varied between 1.2 x 1 0-4 and 7.2 x (Since both experi- 
ments recovered only wild-type mutants, the recombination rates given here are 
twice those rates given in the two papers.) Estimated mutation rates vary between 

and for visible mutations at representative loci in Drosophila the 
rate vanes between and (DOBZHANSKY 1970). Therefore, the rate of 
intragenic recombination is large enough to be a significant process in deter- 
mining the number and distribution of alleles, as long as 4Np is greater than one. 

Using either the number of alleles o r  the homozygosity to estimate the value 
of 4Np, intragenic recombination should be an important factor in generating 
variation at loci such as esterase-5 and xanthine dehydrogenase (the rosy locus) 
in Drosophila, and the HLA A and B loci in man. In populations of Drosophila 
pseudoobscura (not including Guatemala and BogotA) , the homozygosity and 
number of alleles of esterase-5 vary from 0.20 to 0.32 and from 4 to 10, respec- 
tively (calculated from Table 26; LEWONTIN 1974) ; and for xanthine dehydro- 
genase from 0.16 to 0.61 and from 4 to 9, respectively (SINGH, LEWONTIN and 
FELTON 1976). Among the 146 genomes from all 12 populations, there were 
37 alleles of xanthine dehydrogenase detected. In man, for HLA A and B, the 
number of alleles are at least 15 and 16, respectively, with corresponding homo- 

to 5.2 X 

and 
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zygosities of 0.15 and 0.1 1 for European Caucasoids (BODMER, CANN and PIAZZA 
1973). 

The data on the rate of intragenic recombination and the value of 4Np imply 
that intragenic recombination plays a significant role in determining the distribu- 
tion of neutral alleles in finite populations. In particular, the number and dis- 
tribution of alleles at the xanthine dehydrogenase structural locus should be 
influenced by intragenic recombination and therefore any test of neutrality 
based on EWENS’ sampling scheme would be inappropriate for this locus. 

We would like to acknowledge an anonymous reviewer for helpful comments. 
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