Abstract
Deer mice are polymorphic for electrophoretic hemoglobin phenotypes showing one, two, or three bands. Within the multibanded phenotypes, there is considerable variation in the hemoglobin partitioning, defined as the fraction of total hemoglobin made up by the secondary and tertiary bands. In subspecies sonoriensis, for example, hemoglobin partitionings range from 0.03 to 0.38. The inheritance of partitioning values is under remarkably strict genetic control. The genetic variation is additive and the narrow heritability is close to 1.0. The inheritance data can be modeled in precise detail by postulating multiple-allele polymorphisms at globin regulatory loci. Comparison of simulated versus actual inheritance data demonstrates that the so-called null structural alleles actually produce functional globins.—The genetic controls in Peromyscus may be analogous to those in primates. Unfortunately, the molecular mechanisms effecting the regulation are unknown. Different subspecies of P. maniculatus show strikingly different arrays of partitioning values, but the role of natural selection in maintaining the quantitative polymorphisms remains obscure.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bank A., Gambino R., Ramirez F., Maniatis G., Natta C., Kacian D., Spiegelman S., Marks P. A. Regulation of globin synthesis in the thalassemias. Ann N Y Acad Sci. 1974 Nov 29;241(0):247–252. doi: 10.1111/j.1749-6632.1974.tb21883.x. [DOI] [PubMed] [Google Scholar]
- Bank A., O'Donnell J. V. Intracellular loss of free alpha chains in beta thalassemia. Nature. 1969 Apr 19;222(5190):295–296. doi: 10.1038/222295a0. [DOI] [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- King M. C., Wilson A. C. Evolution at two levels in humans and chimpanzees. Science. 1975 Apr 11;188(4184):107–116. doi: 10.1126/science.1090005. [DOI] [PubMed] [Google Scholar]
- Li I. C., Daniel W. L. Correlation between structural variation and activity of murine kidney beta-galactosidase: implications for genetic control. Biochem Genet. 1976 Dec;14(11-12):933–952. doi: 10.1007/BF00485126. [DOI] [PubMed] [Google Scholar]
- Lodish H. F. Translational control of protein synthesis. Annu Rev Biochem. 1976;45:39–72. doi: 10.1146/annurev.bi.45.070176.000351. [DOI] [PubMed] [Google Scholar]
- Maybank K. M., Dawson W. D. Genetic and developmental variation of hemoglobin in the deermouse, Peromyscus maniculatus. Biochem Genet. 1976 Apr;14(3-4):389–400. doi: 10.1007/BF00484777. [DOI] [PubMed] [Google Scholar]
- Nance W. E., Grove J. Genetic determination of phenotypic variation in sickle cell trait. Science. 1972 Aug 25;177(4050):716–718. doi: 10.1126/science.177.4050.716. [DOI] [PubMed] [Google Scholar]
- Nielsen J. T. Variation in the number of genes coding for salivary amylase in the bank vole, clethrionomys glareola. Genetics. 1977 Jan;85(1):155–169. doi: 10.1093/genetics/85.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nute P. E. Multiple hemoglobin alpha-chain loci in monkeys, apes, and man. Ann N Y Acad Sci. 1974 Nov 29;241(0):39–60. doi: 10.1111/j.1749-6632.1974.tb21865.x. [DOI] [PubMed] [Google Scholar]
- Orkin S. H., Swan D., Leder P. Differential expression of alpha- and beta-globin genes during differentiation of cultured erythroleukemic cells. J Biol Chem. 1975 Nov 25;250(22):8753–8760. [PubMed] [Google Scholar]
- Popp R. A., Bailiff E. G. Sequence of amino acids in the major and minor chains of the diffuse hemoglobin from BALB-c mice. Biochim Biophys Acta. 1973 Mar 23;303(1):61–67. doi: 10.1016/0005-2795(73)90148-7. [DOI] [PubMed] [Google Scholar]
- Prager E. M., Wilson A. C. Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution. Proc Natl Acad Sci U S A. 1975 Jan;72(1):200–204. doi: 10.1073/pnas.72.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stern R. H., Russell E. S., Taylor B. A. Strain distribution and linkage relationship of a mouse embryonic hemoglobin variant. Biochem Genet. 1976 Apr;14(3-4):373–381. doi: 10.1007/BF00484775. [DOI] [PubMed] [Google Scholar]
- Thompson P., Horning M. J. Regulatory interactions involving two hemoglobin loci of Chironomus. Biochem Genet. 1973 Mar;8(3):309–319. doi: 10.1007/BF00486184. [DOI] [PubMed] [Google Scholar]
- Thompson P., Patel G. Compensatory Regulation of Two Closely Related Hemoglobin Loci in CHIRONOMUS TENTANS. Genetics. 1972 Feb;70(2):275–290. doi: 10.1093/genetics/70.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward R. D. Alcohol dehydrogenase activity in Drosophila melanogaster: a quantitative character. Genet Res. 1975 Aug;26(1):81–93. doi: 10.1017/s0016672300015871. [DOI] [PubMed] [Google Scholar]
- Wilson A. C., Maxson L. R., Sarich V. M. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2843–2847. doi: 10.1073/pnas.71.7.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]