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ABSTRACT 

Formulae are developed for  the distribution of allele frequencies (the 
frequency spectrum), the mean number of alleles in a sample, and the mean 
and variance of heterozygosity under mutation pressure and under either 
genic or recessive selection. Numerical computations are carried out by using 
these formulae and WATTERSON’S (1977) formula for  the distribution of allele 
frequencies under overdominant selection. The following properties are 
observed: (1) The effect of selection on the distribution of allele frequencies 
is slight when 4Ns 2 4, but becomes strong when 4Ns becomes larger than 
IO, where N denotes the effective size and s the selective difference between 
alleles. Genic selection and recessive selection tend to force the distribution 
to be U-shaped, whereas overdominant selection has the opposite tendency. 
(2) The mean total number of alleles in a sample is much more strongly 
affected by selection than the mean number of rare alleles in a sample. (3) 
Even slight heterozygote advantage, as small as 10-5, increases considerably 
the mean heterozygosity of a population, as compared to the case of neutral 
mutations. On the other hand, even slight genic or recessive selection causes a 
great reduction in heterozygosity when population size is large. (4) As a test 
statistic, the variance of heterozygosity can be used to detect the presence of 
selection, though it is not efficient when the selection intensity is very weak, 
say when 4Ns is around 4 or  less. A model, which is somewhat similar to 
OHTA’S (1976) model of slightly deleterious mutations, has been proposed to 
explain the following general patterns of genic variation: (i) There seems to  
be an upper limit for the observed average heterozygosities. (ii) The distribu- 
tion of allele frequencies is U-shaped for every species surveyed. (iii) Most of 
the species surveyed tend to have an excess of rare alleles as compared with 
that expected under the neutral mutation hypothesis. 

selectionist us. neutralist contmversy over the maintenance od genic  ation ion in natural populations has now continued unabated for ten years 
(see LEWONTIN 1974; NEI 1975 for reviews). What is needed to resolve this 
controversy is a theory by which the statistical properties of a population under 
the joint effect of mutation, selection and random drift can be examined thor- 
oughly. Only by so doing can one evaluate the relative importance of these three 

* Dedicated t o  SEWALL WRIGHT for his pioneering work on the stochastic distribution of multiple alleles. 
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factors in the maintenance of genetic variation or construct suitable statistics fo r  
testing hypotheses. Actually such a theory can be developed by using WRIGHT’S 
(1949a) formula for the joint distribution of multiple alleles, but only very 
recently have workers begun to do so. Using this formula, WATTERSON (1977) 
has developed a statistical theory for the case of symmetrical overdominance 
among multiple alleles, and I (LI 1977) have developed a similar theory for the 
cases of genic selection and recessive selection; WATTERSON (1978) has later 
studied more general cases. In LI (1977), however, I have presented only a short 
summary of some of my findings. Here I present a detailed account. In Section I, 
I derive formulae for the distribution of the mean number of alleles at different 
frequencies or the frequency spectrum, and formulae for the mean number of 
alleles in a sample. Numerical computations are carried out by using these 
formulae and that of WATTERSON (1977) to see how selection changes the shape 
of the distribution of the mean number of alleles at different frequencies. Numeri- 
cal computations are also carried out for the expected number of alleles whose 
sample frequency is equal to or less than q, 0 5 q I 1. In  Section 11, I develop 
formulae for the mean and variance of heterozygosity. These results, together 
with that of WATTERSON (1977), are applied to study how the average heterozy- 
gosity of a population changes with population size. The present result is also 
used to examine the effect of selection on the variance of heterozygosity. In 
Section 111, I discuss the implications of the present findings for the maintenance 
of protein polymorphism. 

DISTRIBUTION OF ALLELE FREQUENCIES 

One of the most useful methods of describing a population is the distribution of 
allele frequencies or the frequency spectrum, which is conventionally denoted 
by @(x). Actually, @(z) is not a distribution in the probabilistic sense, but has 
the meaning that @ (z) dx represents the expected number of alleles whose fre- 
quency is between x - dx/2 and x f dx/2. Although a more precise term for 
@(z) is the distribution of the mean number of alleles at different frequencies, 
I follow the convention of calling @(x) the distribution of allele frequencies. The 
distribution @(z) for the case of neutral mutations has been studied by WRIGHT 
(1949b) , KIMURA and CROW (1964) , KARLIN and MCGREGOR (1967), and NEI 
and LI (1976), while that for the case of overdominant selection by WATTERSON 
(1977). Here, I study the cases of genic and recessive selection. Before this, I 
review WRIGHT’S (1949a) formula for the joint distribution of multiple alleles, 
which is essential to this study. 

Consider a random-mating population of effective size N .  Let the number of 
possible allelic states at a locus be K ,  and let Ai denote the ith allele and xi its 
frequency. Let the selective value of genotype A,Aj be w,j, which is assumed to 
be constant over time, and let m(z,, . . . ,xK) be the mean fitness of the popula- 
tion. Assume that in each generation A, mutates to Ai with probability uf,, 
j # i. In  practice, it is likely that uj, is a function of both Ai and A,, but no solu- 
tion seems to have been obtained under this general condition. However, for the 
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special case where uji = ui for all j # i, WRIGHT (1949a) has obtained, using 
some heuristic arguments, the following formula folr the equilibrium joint proba- 
bility density for the first L = K - 1 gene frequencies: 

where ai = 4Nui and xK = 1 - x1 - . . . - xL. A formal mathematical proof of 
this folmula has later been provided by KIMURA (1956), WATTERSON (1977) 
and LI (1977), independently. Note that the mutation rate per gene per genera- 
tion from Ai to all other alleles is ul + . . . + vi+l f . . . + V K  or U - vi, 
where U = U ,  + . . . + ui + . . . + U,. If ui is the same for all i, then U - vi = U 
and ui = u/L  for all i. This symmetrical case has h e n  known as the K-allele 
model (WRIGHT 194913; KARLIN and MCGREGOR 1967; KIMURA 1968). The 
normalizing factor C in formula (1) is determined by the relation 

J . . .I, +(xl, . . . ,xL)dxl . . . d.xL = I, (2) 

where the integration is over the region defined by 

R: O I ~ i 5 1 ,  X I +  ...+ ~ L 5 1 .  

This multiple integral may be evaluated by following WATTERSON’S (1977) 
method, if the wij’s are given explicitly. 

The form of formula (1) is amazingly simple. Thus, to determine the joint 
probability density, we need only know the mean fitness of the population and 
the mutation rate (vi) to Ai. This makes formula (1) also applicable to the case 
where Ai denotes a class of equally fit alleles instead of a single allele. To see 
how this works, we consider the following simple example. Suppose that the last 
( K  - j )  allelic states are equally fit and let us regard them as a single class Bj+l .  
Let Bi = Ai, i = 1, . . . , j .  Let yi be the frequency of B, and U+ be the mutation 
rate to B,, i = 1,.  . . , i -I- 1. This implies y ,  = x i  and U* =vi, i =  1, . . . , i ;  
~ j + ~  =xj+l+ . . . + x K  and u , + ~  u , + ~  + . . . + uK. Obviously W ( X ~ ,  . . . , x K )  

can be written as m(yl,. . . , y3+1). Then, formula (1) says that the joint distri- 
bution of yl, . . . , yj is given by 

i+l .IIVU*-l 

+ ( Y l , .  . . , y j )  = C’W2’v ,II yi . 
2=1 

This can be verified by following the simple proof procedure of formula (1) 
given by LI (1977) (see also KIMURA 1956; WATTERSON 1977). In particular, 
it is easy to see that when j = 1, this formula becomes identical with that for the 
diallelic case where the mutation rate from B,  to B, is u1 and that from B,  to B, 
is uZ (WRIGHT 1949a). 

Genic Selection 
We begin with the general case. We assume that the mutation rate, U = U - ui, 

per gene per generation is the same for all alleles so that LY( = 4Nv/L = a fo r  all i. 
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We use the notations: 0 = 4Nv = La: and 6’ = 4Nu = 6 + a:. Let the selection 
coefficient for the ith allele be ai so that the relative fitness of genotype AiAi is 
given by w L j  = 1 + a, + aj. Then f= 1 + 2alzl + . . . + 2aKzK and 

K a-1 
+(Zl,. . . ,XL) =CW2N II xi , (3) 

where (?”) is the binomial coefficient and the summation z is over all vectors 
( n )  = (G, . . . , nK) of non-negative integers such that n, + . . . + nK = n. Using 
the Dirichlet integral formula (JOHNSON and KOTZ 1972) and the relation given 
by (2), we find that 

(n ) 

2N n1 
C-l= z (2N)n!2n z II [ai r (n i  +a)/~i!]/r(rt+6’). 

n=o 71 (n) 1 

To derive @(x), we focus our attention on a particular allele, say Ai, and com- 
pute the probability, +, (xj) dxj, that the frequency of A, in the population is in 
(xi - dzj/2, zj + dzj/2). Note that +j (zj) is the marginal probability density 
for x j ,  and therefore 

+j(zj) = I.. .J +(xl,.. . ,xL)dxl.. . dxj-ldxj+l.. . dxL, (4) 

where the integration is over the region 

R’: 0 5 xi 5 1 - xj, 5 1 - xi, i # j .  

Use of the transformation 

zi=z;/(l  -xi), iZj, 
enables us to apply the Dirichlet integral formula to evaluate the multiple 
integral of (4) and we obtain 

Since there are K allelic states, 

The subscript of 5 is now dropped because we are concerend with the mean 
number of alleles at a given gene frequency class, not  any particular allele or 
alleles. Note that without losing generality, we can assume aK = 0, and formula 
( 5 )  is simplified to some extent. 

Formula (5) is general but it is useful only when K or the magnitude of the 
4Nai’s is small; otherwise it becomes computationally intractable because, for a 
large n or K ,  there are too many possible alternatives of the ni’s to be considered. 
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In  order to make detailed computations feasible, we consider the following 
models. 

Suppose that there are three classes of alleles, within each of which there are 
a number of equally fit alleles. Let the number of allelic states for the first, 
second, and third classes be I ,  M ,  and Q = K - I - M ,  and let the selection 
coefficient be s1 for the first-class alleles, sz for the second-class alleles, and 0 for 
the third-class alleles; s1 and s2 can be positive or negative. %(z) can be obtained 
by putting these conditions into formula ( 5 ) ,  but this creates the same compu- 
tational difficulty as that of formula ( 5 ) .  The following approach overcomes this 
difficulty. Let 

y l=  5 1  + . . . + XI, 
y z = x 1 + 1 + . . . + x 1 + a f ,  uz = M v / L ,  e2 = 4NUz = M , ~ ,  

U1 = Iv/L,  e, = 4NUl= iff, 

y3 = 1 - yl - y2, ~3 == Qu/L7 e3 = 4N~3 Qa, 

where y. is the sum of the frequencies of the ith class alleles and ui is the sum of 
mutation rates to the ith class alleles. Note that formula (5) now becomes 

= I+i (x) + M+r+i (2) + Q + K ( ~ ) .  (6) 

Note also that we may alternatively let the selection coefficients for the first-, 
second-, and third-class alleles be 0,  t2, and tR, or r1, 0, and r3 so that FV can be 
expressed in  terms of the yi's in three different ways: 

(7a) 
(7b) 
(7c) 

where t 2 =  (sz-sl)/(l +2sl), t 3 = - S 1 / ( 1  +2s1), r l =  (sl-sz)/(l +2sz), and 
7-3 = - s2 / (  1 + 2s2). To evaluate +1 (xl) , we consider the joint distribution of 
xl, . . . ,x1-1,yZ,y3, and write as (7b). As mentioned in the remark on formula 
( 1 ) , this distribution can be written as 

w = 1 + 2s,y,+ 2s2yz 

= (1 + 2S1) (1  f 2tzyz + 2t3y3) 
= (1 + 2Sz) ( 1  + 2riyl + 2T-3y3) 

+ (XI7 * * * ,xI--lrYZ?y3) = Clr (a)"( + 2t2y% + 2t3y3) 
I 

x yze2-ly3&-l n: 1 x p ,  ( 8 )  

multinomial expansion and the 

r(nl + ez)r(n2 + e,). 

where C ,  is the nolrmalizing constant. Using 
Dirichlet integral formula, we find that 

2 N  n!2" t 2 n d 3 n ~  cl-l = x (;) E- 
r ( n  + e') ( n )  nl!n2! n=O 

From formula ( 8 ) ,  we obtain 
Zh 

+1(~) = Clr(lff)-lxwl(l - 
n!2" 

z)B-l z (") (1  -x)" 
n=o n r(n + e )  



354 W-H. LI 

(To keep the notation simple, we have written here and shall write +i(xi) as 
+i(z) when it creates no ambiguity.) On the osther hand, to evaluate +l+l(xI+l), 
we consider the joint distribution of yl,xl+l, . . . , ~ ~ + ~ - , , y ~ ,  and write @ as (7c). 

In the same manner, we obtain 

2N n!2" 
+ K ( ~ )  = C3r(a)-1~~i(1 - z)o-l z (") (1 -x)" 

n=o n r ( n + e >  

Putting together (6), (9), (1 1 ) , and ( 13), we have 

x [e1Clt2nlt3nZr(n, + e2)r(n2 + e,) + 02C2rln~r3"~r(nl + e,>r(n,  + e,) + e3c3Sln1S2nzr (n, + e,) r (n2 + e,) I. (14) 

If )4NsiI << N, i = 1,2, formula (14) may be approximated by 

.p-1(1 - s) 8-1 2~ (1 - z)" 1 a(x) = z z- 
r ( 1  +a) n=o r (n+O)  ("1 nl!n2! 

x [elc1T2n1T3n2r(n, + e2>r(n2  + e,) + e,C,Rln~R,nZr(nl + el)r(n2 + 6,) 
+ e , ~ , ~ , n ~ ~ , ~ ~ r ( n ,  + e,)r(n, + e , ) ] ,  (14') 

where Si = 4Nsi, Ti = 4Nt6, Ri = 4Nr4, and 
2 N  

c-1 = I; r ( n  + e y  z T2n1T3nzr(n, + e,)r(n, + e3>/(nl!nz!), 
1 n=o (n) 
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2N 
C-l= x r ( n  + e y  z SlnlSZnZr(nl + &)r(n,  + 6,)/(nl!n,!). 

3 ll.=o ( n )  

The same approximation applies to all of the following formulae, but will not 
be repeated (see LI 1977). However, all numerical computations of this study 
are carried out under this approximation. 

The key difference between formulae (5) and (14) is that in the latter for 
every n only the possible alternatives of nl and n, are to be considered, i.e., the 
summations z are now univariate summations over nl = 0, 1, 2, . . . , n, with 
n, E n - n,. Since this is true for any K, the limiting case of infinitely many 
alleles is just a special case. Indeed, to apply formula (14) to the model of infinite 
alleles (WRIGHT 194913; KIMURA and CROW 1964), we simply put a = O  and 
0' = 8. This remark applied to all the following results. 

(n) 

The mean number of alleles in a population is given by 

assuming that the effective populatioln size, N ,  is equal to the actual size. (We 
use 1/4N instead of the conventional value 1/2N as the lo'wer limit of integration 
because it allows a continuity correction.) When K is finite, 

r 1 / 4 ~  

= K -  +((X>dx, 

in which the last integral represents the mean number of alleles that are not 
present in the population. 

We now study the mean number of alleles in a sample. We consider only the 
case of infinitely many alleles, since the result for this case is somewhat simpler 
in form and numerical computations are usually carried out under this condition. 
OHTA (1976) shows that the mean number of alleles whose sample frequency 
is less than or equal to q is given by 

x) (x) dx, 

where 2n is the number of genes sampled, is = 2mq, and [is] denotes the integral 
part of i8. (If we define n4 as the mean number of alleles whose sample frequency 
is less than q, then [is] = 2mq - 1 if 2mq is an integer, and [is] = the integral 
part of 2mq if otherwise.) We assume that N >> m so that the lower limit of 
integration can be replaced by 0 with a good approximation. Using the relation 

(2m-i+  l ) i  
i (2m + n + e - i) 

1: (zT)xyl - x)Z*i(I - x)nx-1(1 - x)O-ld.X = ' 
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where (a)i = a(a + 1) . . . (a  + i - I ) ,  we find that 

ZN n!2" ( 2 m - i i l ) i  1 
n=o r ( n +  e )  i=i i ( 2 ~ ~ + n + e - i ) ~  (n) nl!nz! 

n4 = 2 (.:) z z- 

x [e1Clt2nlt3nzr (n, + e,) r (n ,  + e,) + ezCz~lnl+3n2r (n ,  + e,) r ( 12, + e,) 
+ e3c3~l~lszn2r(nl + e,)r(n, + e , ) ] .  (15) 

If q = 1, the above formula can be simplified by noting that[i,] = 2m and 

The same substitution applies to the case of recessive selection below (formula 
(24) ) .When q = 1, formula (15) represents the expected total number of alleles 
in a sample of 2m genes, and it reduces to formula ( 11) of EWENS (1972) if all 
mutations are neutral. 

The formulae for the case of k ( k  > 3) classes of alleles can be written down 
immediately by analogy, but computer computation soon becomes impracticable 
as the number of classes increases. On the other hand, the case of two classes of 
alleles is just a special case of three classes of alleles, Since this case is of particu- 
lar interest, because of its simplicity, we consider it in some detail. Let the 
selection coefficient be s for the first-class alleles and 0 for the second-class alleles. 
This is equivalent to assuming that s1 = s and sz = 0. Since there are no third- 
class alleles, 8, = 0. Putting these conditions into formulae (14) and (15), we 
obtain 

p-1(1  - 2) B-1 2N 2"(1 -z)n 

r ( l + a )  n=o r (n  + 0 )  
@(z) =- 2: (2") 

where t = - s / (  1 + 2s). Recently, WATTERSON (1978) has also studied the case 
of two classes of alleles under genic selection and has obtained an  approximate 
formula for @(z), assuming that S = 4Ns is very small. Incidentally, formula 
(6) of LI (1977) contains a typographic error: 8, should have been O2 - 1. 

The above model of two classes becomes identical with that of WRIGHT (1966) 
when there is only one allelic state in the first class, i.e., Z = 1. WRIGHT called the 
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first allele the type allele and gave an estimate for the mean number of deleterious 
alleles present in the population. He assumed that each gene mutates at the rate 
of U per generation and that the rate of backward mutation from all other alleles 
to any allele is ul. This is equivalent to the assumption that the number of allelic 
states is K = u/ul + 1. He obtained the following approximate formula for  the 
mean number of deleterious alleles in the population, assuming S large. 

The general formula for nd is obtained by integrating the second term of (17) 
from 1/4N to 1 and by noting that el = a and 8, = 8. 

2 N r ( n + a )  
r ( l+a)  "=O r ( n +  e )  

c, z (") (2s)" 
e na= KB- 1 - 

Formula (20) applies to any values of N and s, but it is more complicated than 
WRIGHT'S (1966) formula. It is therefore interesting to find the condition under 
which WRIGHT'S formula holds approximately. WRIGHT considered u1 = 0.25 x 

and 0.25 x 10-lo, and found that nd is almost the same for both values of u1 
if U = 1k6, s 2 and N 2 IO5. Since the approximation is more accurate 
when u1 is larger, I have used the smaller value u1 = 0.25 x 10-lo in computing 
Table 1. I t  is seen from this table that WRIGHT'S formula holds approximately 
when S is larger than 10 and that formula (19#) gives a close approximation to 
formula (19). 

Recessiue Selection 
We consider two classes of alleles and assume that the number of allelic states 

is I for the first class and M = K - I for the second class. Let the relative fitness 
of genotype AiAj be 1 - 2s if i,j > I ,  and be 1 otherwise. This means that the 
second-class alleles are completely recessive. The joint distribution of xl, . . . ,xI-l 
and y z  is 

TABLE 1 

Mean number of akleferious alleles in a population of size N 

4N 4 x  104 8 X l P  105 2 X I W  3X108 4X 105 
4Ns 4 8 10 20 30 40 

2.47 3.31 
3.18 
3.19 

1.29 1.65 
0.64 0.80 1.60 2.39 

1.60 2.39 

0.58 1.16 
0.32 

formula (20) 
formula (19) 
formula (19') 0.33 0.65 0.81 

Note: = 10-6, u1 = 0.25 x 10-10 and s = lo4. 
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2 a, r (2n + e,) c-1 = z (") (-2s)" 
1 n=o n r (2n + e#)  ' 

from which we obtain 

Similarly we obtain 
K 

4 ( Y ~ , Z ~ + ~ ,  . . . ,xK) = C,r (a)-"( 1 + 2s,yl + 2 q )  2Ny:-1 , (22) 

where s1 = 2s/ (1 - 2s) , sz = -s/ (1 - 2s). Thus, 

a(5) = Z@,(x) + M @ K ( Z )  

The formula corresponding to formula (15) is 

As in the case of genic selection, WRIGHT (1966) gave an approximate formula 
for the mean number of recessive deleterious alleles in the population, assuming 
that there is a type allele. This formula is similar to formula (19), except that 
4N d% is to be substituted for  S. The general formula for this number can be 
obtained by integrating the second term of formula (23), i.e., M + , ( x ) ,  from 
1/4N to 1, and by noting that e l  = a and 8, = 8. Numerical results indicate that 
Wright's formula again holds approximately if S is larger than 10. Note, how- 
ever, that formula (1 9') is applicable only if 4N d G i s  larger than l. 
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Numerical Examples 
(A) Distribution of allele frequencies: Before considering numerical results, 

let us examine analytically the folrm of the distribution of allele frequencies 
under various types of selection. The distributions of allele frequencies for the 
cases of genic and recessive selection are given above, while that for the case of 
symmetrical overdominance is given by 

@(x) = est-l(i - x)ble-~zzW(,(l - x)z ,8) /W(~,8) ,  (25 1 

where U = 2Ns ( WATTERSON 1977). This formula is derived under the assump- 
tions that the relative fitness is 1 for all heterozygotes and 1 - s for all homcny- 
gotes, that the number of allelic states is infinite, and that 12Nsl << N .  The Ci ,n  

constants can be computed by use of the following recursive formula: 

starting with Cl,n = (2n  - l)!/n! (STEWART 1976; WATTERSON 1977). We note 
from formulae ( 5 ) ,  (14), ( 2 3 ) ,  and (25)  that regardless of the type of selection 
all the distributions under the model of infinite alleles have the common factor 
st-, ( 1  - s) B-I, as does the distribution for the case of neutral mutations: 

~ ( z )  = exqi - Z ) B - ~  . (26)  

Thus, in all cases the value of @(x) at s = 1 is infinite if 8 < 1 ,  finite if 8 1, 
and 0 if 8 > 1, while that at s = 0 is always infinite. It is also easy to see that 
@(s) given by (26)  is U-shaped if 8 < 1 and L-shaped if 8 2 1. By continuity, 
the distribution under very weak selection pressure should be of the same shape 
as that for the case of neutral mutations; numerical results indicate that the 
shape of @(s) is not much affected i f s  5 1/N. These few properties are all that 
can be inferred analytically. To have a deeper understanding, numerical compu- 
tations are necessary. A particular effort to be made is to see under what situation 
a U-shaped distribution can be obtained, because this shape of distribution is 
universally observed in nature for protein loci (unpublished studies of CHAKRA- 
BORTY, FUERST and NEI) . 

In all examples in this section, the model of infinite alleles is used. The 
examples given in Figures la  and Ib are intended to show the effect of selection 
on the shape of the distribution of allele frequencies. The selection intensity is 
4Ns1 20 and 4Nsz = 10 for the case of three classes of alleles under genic 
selection, 4Ns = 20 for the case of two classes of alleles under recessive selection 
and 2Ns = 10 for the case of overdominant selection. In the case of genic selec- 
tion, 8 is divided into 8, = 0.018, O2 = 0.098, and 8, = 0.908; 8 / 2  = 2Nv repre- 
sents the number of new alleles appearing in each generation, of which 8,/2 
2Nu, belong to the ith class. In the case of recessive selection, 0.016' and 
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O 2  = 0.990. In  Figure la, 6' = 0.1 for all cases. The curve for neutral mutations 
is U-shaped, as expected. The curve for genic selection is also U-shaped but there 
are fewer intermediate- and low-frequency alleles and more high-frequency 
alleles as compared to the case of neutral mutations. To avoid crowding, the 
curve for recessive selection is not shown in Figure la, but it is U-shaped. The 
curve for overdominant selection has a peak at x = 0.41 and is far from being 
U-shaped-there are more intermediate- and low-frequency alleles and fewer 
high-frequency alleles as compared to the case of neutral mutations. Thus over- 
dominant selection and genic selection have opposite effects on the shape of the 
distribution of allele frequencies. The mean heterozygosities for the cases of 
overdominant selection, neutral mutations, and genic selection are 0.485, 0.091, 
and 0.012, respectively. In Figure lb, 6' = 1. Now only the curve for genic selec- 
tion is U-shaped. However, the curve for  recessive selection is nearly U-shaped 
and shows a similar tendency as that for genic selection. The curve for over- 
dominant selection is again far from being U-shaped. As expected, the curve for 
neutral mutations is L-shaped. The mean heterozygosities for the cases of over- 

5 
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2 

1 

0 
0 .5 1 

G E N E  F R E Q U E N C Y  
FIGURES l a  and 1b.-Distribution of allele frequencies under various types of selection. The 

ordirlate denotes @(z), which has the meaning that +(z)dz represents the expected number of 
alleles whose frequency is between z - dz/2 and z + dz/2. In Figure la, e = 0.1 while in 
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dominant selection, neutral mutations, recessive selection, and genic selection 
are 0.697,0.500,0.238, and 0.1 14, respectively. The bearing of the above findings 
on protein polymorphism will be discussed later. 

Figure 2 shows the effect of population size on the distribution of allele fre- 
quencies for the case of three classes of alleles under genic selection. The param- 
eters used are s1 = s2 = 4 2 ,  U 1.12 x u1 = 0.02 X us = 0.1 X 
and u3 = When 4N = 4  x lo5, the curve is U-shaped. This is expected 
because B = 0.448 is smaller than one. The curve for 4N = 15 X lo5 has a peak 
at z = 0.95, but there are now fewer intermediate-frequency alleles and more 
low-frequency alleles than those for the previous case. As expected, $(z) 
becomes 0 at z = 1 since 0 is now 1.68. When 4N increases to 30 X lo5, the peak 
becomes higher and moves to the left. This tendency will continue as population 
size increases-when N becomes infinite, all alleles will be concentrated near 
x = 0. Although the three curves for  4N = 4 X IO5, 15 X IO5, and 30 X IO5 look 
different, they yield very similar mean heterozygosities: 0.268,0.250, and 0.269. 

15 

10 

5 

0 

P N v =  1 

OVERDOMINANT I 
I 
I ............... NEUTRAL 

---- R E C E S S  I V E  I 

GENIC,  3CLASSES ! 
I 
I 
I 
I 
I 
I 
I 

0 .5 1 

GENE FREQUENCY 

Figure Ib, 6 = 1. Overdominant selection: U = 2Ns = 10. Recessive selection: 4Ns = 20, 6, = 
0.016, and 6, = 0.996. Genic selection: 4Ns, = 20, 4Ns, = 10, 6, = 0.016, 62 = 0.096, and 
6, = 0.96. 
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1 5  

10 

5 

0 

- 4 N = 3 0 x 1 0 5  

.............. NEUTRAL,  e =  .35 

0 .5 1 

GENE FREQUENCY 

FIGURE 2.-The effect of population size on the distribution of allele frequencies under genic 
selection. The ordinate denotes @(z), which has the meaning that +(x)dx represents the 
expected number of alleles whose frequency is between z - dx/2 and z -I- &/2. Mutations are 
divided into three classes with u1 = 0.02 x 10-6, u2 = 0.1 x 1 6 6 ,  and us = 10-6, s1 = 10-5, and 
sp = sl/2. The neutral case is for comparison. For details, see text. 

Let us now consider a hypothetical population in which mutations are strictly 
neutral, but the mean heterozygosity & at equilibrium is about the same as those 
of the above three populations, say 9 = 0.26. From this a, we obtain 0 = 0.35 by 
using the relation H =  e / ( l  i- e )  (KIMURA and CROW 1964). Using this 0 value 
and formula (26), we obtain the curve for the case of neutral mutations (Figure 
2) .  This cunie is very similar to the first curve, but different from the other two 
curves. Thus, the distribution of allele frequencies may be used to detect weak 
selection in large populations where the effect of random drift is relatively weak. 
One general property is that for a given level of mean heterozygosity there is an 
excess of rare alleles in the case of genic selection compared with the case of 
neutral mutations. On the other hand, in the case of overdominant selection the 
number of rare alleles tends to be small, while the number of intermediate- 
frequency alleles tends to be large compared with the case of neutral mutations. 
For example, the mean heterozygosity for the case of overdominant selection 
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given in Figure l a  is 0.485, which is close to the value of 0.500 for the case of 
neutral mutations given in Figure lb, but there are fewer rare alleles and more 
intermediate-frequency alleles in the former case than in the latter (note the 
difference in scale for the ordinates). It should be noted that in this method of 
comparison the distribution for the model of neutral mutations is computed by 
using 0 = p/( 1 - g ) .  Here, I? is the expected heterozygolsity for the population 
under study, while in practice it refers to the observed average heterozygosity. 
If the number of rare alleles for the population under study is larger (smaller) 
than that for the model of neutral mutations, then we say there is “an excess 
(deficiency) of rare alleles.” This terminology is used in this sense throughout 
the present paper. 

In Figure 3 we plot the distribution of the mean number of the third-class 
(most disadvantageous) alleles at different frequencies for the three cases of 
genic selection shown in Figure 2. It is seen that when 4N = 4 x lo5 and 
4Ns, = 4, the third-class alleles are spread over the whole range of gene fre- 

1 5  

10  

5 

0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

---- 4 N =  4x105 

-.-.-. 4 N = 1 5 x 1 0 5  
4N = 30x10  5 

0 .5 1 
GENE FREQUENCY 

FIGURE 3.-Distributions of the number of the third-class (most disadvantageous) alleles 
under genic selection. The ordinate denotes (P3(x),  which has the meaning that @.,(z)dx repre- 
sents the expected number of the third-class alleles whose frequency is between x - dx/2 and 
x f dx/2. The parameters used are the same as those of Figure 2. 
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quency, including the fixation class. But when 4N increases to 15 X lo5 so that 
4Ns,  = 15, virtually none of the third-class alleles have a frequency higher than 
0.3. As the population size increases more, the third-class alleles are pushed 
further down to lower frequencies. Thus, slightly deleterious mutations are able 
to spread over the whole population when N is of the order of l/s or smaller, but 
are kept in low frequency when N is one order larger than l/s, where s is the 
selection coefficient against these mutations. 

A property of prime importance emerges from the above results: the higher 
the potential for mutations to persist in the population, the lower the probability 
for @(z) to be U-shaped. (The potential is determined by N and the selective 
values of the mutations.) This is because the sum of allele frequencies must be 
one, and therefore the probability for  any of the allele frequencies to be close to 
one becomes small when the number od alleles becomes large (cf., Fig. lb ) .  
Obviously the distribution @(z) cannot be U-shaped if there is no allele with 
frequency close to one. The distribution also cannot be U-shaped if there exists 
a peak at an intermediate frequency. Such a peak can arise if there is a force to 
keep some alleles at intermediate frequencies (cf., Fig. la ) .  I t  can also arise 
because of the accumulation of a large number of low frequency alleles (cf., 
Fig. 2). 

In  the light of the above findings, the property of the distribution of allele 
frequencies under various situations can be recapitulated as follows: (1) For 
neutral mutations, there is no selective force to retain alleles in the population, 
but there is also no selective force to eliminate them so that alleles can become 
extinct only through random drift or mutation. Thus, the distribution is U-shaped 
if new alleles arise at a rate lower than one in every two generations, i.e., 
0 = 4 N v  < 1, but it becomes L-shaped if new alleles arise at a higher rate, 
i.e., 0 2 1. ( 2 )  Balancing selection not only has a high potential to retain alleles 
in the population, but also has a tendency to produce a peak at intermediate 
frequencies. Thus, a U-shaped distribution is unlikely to be observed under this 
mode of selection, unless the population size is very small so that random drift 
is strong and selection becomes ineffective. Numerical computations based on the 
model of symmetrical overdominance show that even if 2Ns is as small as 5 the 
distribution is non-U-shaped, because of the existence of a mild peak in the 
middle, if 6' is 0.1; when 0 becomes smaller this peak gradually becomes less 
conspicuous and the distribution tends to become U-shaped. One may argue that 
when the assumption of symmetry is removed the population will have a lower 
potential for holding alleles. However, it should be stressed that even severely 
deleterious alleles can accumulate in the population if they enjoy heterozygote 
advantage or minority advantage. The best example of this is the sickle-cell 
anemia gene in Africa; despite its lethality in homozygous condition, the fre- 
quencies of this gene in some African populations are as high as 0.15, sometimes 
even 0.20 (ALLISON 1961). Therefore, if balancing selection is prevalent, then 
even severely deleterious mutations may persist in the population for a long time 
and the distribution would soon become non-U-shaped as the population size 
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increases. ( 3 )  “Purifying” (or “negative”) selection, which includes genic selec- 
tion, recessive selection, etc., tends to force the distribution to be U-shaped, for 
it is rather effective in eliminating disadvantageous mutations or in keepng them 
in low frequencies. Under this type of selection, the distribution is U-shaped if 
6‘ 5 1. When 6’ becomes larger than one, ~ ( z )  becomes 0 at z = 1, but has a peak 
at a high gene frequency (see Figure 2). The location of this peak depends on 
the intensity olf selection as well as the magnitude of 6’. If it is clolse to z = 1, the 
distribution, when plotted as a histogram, may become U-shaped. For example, 
the histogram for the curve with 6’ = 1.68 in Figure 2 is U-shaped if the range of 
gene frequency is divided into ten equal intervals. This example shows that by 
incorporating even tiny selective differences such as s1 = and s2 = l O ~ ~ / 2  
into the model of selective neutrality, a U-shaped histogram can be obtained even 
if 6‘ is substantially larger than 1. In  natural populations a U-shaped histogram 
may be obtained for an even larger 6’ value, because the majority of mutations 
are perhaps more deleterious than s = Note also that in practice only a finite 
number of genes are sampled from the population, so that low-frequency alleles 
are less likely to be observed than high-frequency ones. This sampling effect tends 
to move the aforementioned peak closer to z = 1. Numerical computations show 
that this effect increases the chance of observing a U-shaped histogram, though 
only to a small extent. Thus, under purifying selection the observed distribution, 
which is generally plotted as a histogram, can be U-shaped even if 6’ is consider- 
ably larger than one, say of the order of 10. However, i t  is unlikely that a 
U-shaped distribution can be observed if 6‘ is much larger than one, say of the 
order of 100 or larger, unless an overwhelming majority of mutations are very 
deleterious so that they are quickly eliminated from the population or kept in 
exceedingly low frequencies. 

(B) Number of alleles in a sample: Table 2 presents the mean number, n,, of 
alleles with sample frequencies less than or equal to q, when m individuals or 2m 
genes are randomly chosen from the population. The parameters are specified in 
the table. For each 6’ value, we consider three cases: (1 ) neutral mutations, (2) 
two classes of alleles under genic selection, and ( 3 )  three classes of alleles under 
genic selection. The third-class alleles of case 3 correspond to the second-class 
alleles of case 2, while the first- and second-class alleles of case 3 represent a 
further subdivision of the first-class alleles of case 2. The population size for  the 
three cases with 6’ = 3.36 is 7.5 times that for the three cases with 6’ = 0.448. 
When there are two or three classes of alleles, the first value in parentheses 
denotes the number of alleles from the first class, the second value from the 
second class, and so on. A number of interesting properties emerge from this 
table. (1 ) For a given 6’ value, the mean number of rare alleles, defined as alleles 
whose sample frequency is less than or equal to 0.01, is almost the same for the 
two cases of genic selection and also for the case of no selection, particularly when 
the sample size is large. On the other hand, the expected total numbers of alleles 
in a sample for the two cases of genic selection differ considerably from that for 
the case of no selection. This finding supports NEI’S (1977) contention that, for 
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estimating mutation rate, it is better to use the number of rare alleles rather than 
the total number of alleles, for the former is much less affected by selection than 
the latter. (2) A great majority of the alleles in a sample are in low frequencies, 
i.e., around or less than 0.01, and are largely due to mutations of the second or 
third class. (3) The n4 value is larger for case 3 than for case 2 when S, = S = 4, 
but the situation is reversed when S, = S = 30. A simple explanation for this 
phenomenon is as follows. In case 3, only a minority of mutations, less than 
2 percent, belong to the first class. Therefore, when S, = 4 there is a high proba- 
bility that the first-class alleles are in very low frequencies or even absent from 
the population (see the first values in parentheses for  case 3 with 6 = 0.448). 
Compared with case 3, there should be more first-class alleles in case 2 because 
about 10 percent of the mutations belong to this class. Consequently, selection is 
weaker in case 3 than in case 2, so that n, is larger folr case 3 than for  case 2. On 
the other hand, when S, = S = 30, selection becomes effective, so that the sum of 
the frequencies of the first-class alleles is high even in case 3. Now selection is 
stronger in case 3 than in case 2 because more alleles are selected against, and 
thus n, is smaller for the former than for  the latter. 

The sampling property of allele frequencies can be used to detect the pres- 
ence of selection. To see this, we consider the following example. Cases 3 with 
0 = 0.448 and 6 = 3.36 are equivalent to the cases of 4N = 4 x lo5 and 4N = 
3 x IO6 in Figure 2, respectively. As noted earlier, the mean heterozygosities for 
these two cases are virtually equal: 0.268 and 0.269. If we assume that the hetero- 
zygosity of a population is completely due to neutral mutations and use = 0.270 
to estimate 6, then we get 6 = 0.37. The values of n, for neutral mutations with 
6 = 0.37 are given in the last column of Table 2. It is clear that the differences 
in these values between the cases of genic selection and neutral mutations are 
negligibly small if S, = 4 and S, = 2, but very large if S, = 30 and Sz = 15. In 
particular, no.ol for the case of genic selection with S1 = 30 and S, = 15 can be 
more than eight or nine times that for neutral mutations. We shall discuss the 
implication of this finding for protein polymorphism later. 

MEAN A N D  VARIANCE O F  HETEROZYGOSITY 

Let H and J denote the heterozygosity and hofmozygosity o'f a locus. Under 
random mating, 

J = X 1 2 + . .  . + x K 2  , 
so that 

K hi K 

The variance of .I is given by V ( J )  = E(],)  - F .  Since H = 1 - J, B = 1 -7 
and V ( H )  = V ( J ) .  We shall determine the mean and variance of H by studying 
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the moments of 1. When there is no selection, the following results agree with 
those for the case of neutral mutations obtained by KIMURA and CROW (1964), 
STEWART (1976) , WATTERSON (1974) and LJ and NEI (1975). 

Genic Selection 

by folrmula (3') and 
In the general case, the joint probability density of gene frequencies is given 

E(]) = c J . . . J 5 zi2+(z1,. . . ,zL)dxl.. . dzL 
R %=1 

2 N  n!2" E(P)  = C  I: ('") 
n=O n 

In the case olf three classes of alleles, it is simpler to derive 7 from the distri- 

E(]) = J:z2~(z)dx 

bution of allele frequencies given by formula (14). 

2 N  n!2" 1 =(l+Cu) I: ( Y )  I:- 
r ( n  + 2 + 0.) (n) nl!n2! n=o 

x [ elClt2nlt3nz r (n, + e,) r ( n2 + e,) + 132Cz~ln1r3n~ 

x r (n ,  + e,)r(n, + e,) + e 3 C 3 ~ 1 n l ~ 2 n ~ r ( n ,  + e , ) r (n ,  + &>I,  (29) 

in which the Ci's are the same as those in formula (14). To compute E(]'), 
we notice that 

E(],) = ZE(z14) 4- ME(xI,4,) 4- Q E ( ~ K ~ )  

+ Z(Z - l ) E ( ~ t z i )  + M ( M  - l ) E ( ~ ~ + 2 , ~ ~ + 2 ~ )  + Q(Q - 1)E(z2,~;) 

+ 2ZM E(z;zr,2,) + 2ZQE(z:z:) + 2MQE(x1,2,x;). 

From the joint distribution of zl,. . . ,~1-1,y2, and y3 given by formula (8) 
we obtain 
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From formulae (IO) and (12), we obtain 
369 

E(z;z;) = a2(a + l)2E(z;)/(a)4. 

To evaluate E(X~X,,"~), we consider the joint distribution of xl, zl, 
z l + ~ ,  and y3,  where z1 = yl - zl, and find that 

. . . , 

+ ( ~ ~ , z ~ , z I + ~ ,  . . . ,xI+M-l,yS) = C 4 r ( p q  1 + 2rlxl + 2rlzl + 27-&~3)'~ 

n!2" rln~r3n~rln3 ZN 

c-1 = ( 2 N )  z r(nl  + e,- 
r ( n  + e.) n1!n2!n3! 4 n=o 

n!2" SlnISznzSln3 

r ( n +  0') ( n )  n1!n2!n3! 

2N 

?= z (") z r (n l  + e, - a) r (n ,  + e2)r(n3 + a), n=o 

and 
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x r ( n , + ~ , ) r ( n , + e , - ~ ) r ( n , + 2 + ~ ) ,  

n!2" S1n1Szns2n3 2 N  

c-1 (") z r(nl  + s,)r(n, + e, -4 
r ( n  + e') ( n )  nl!n,!n,! 6 n=o n 

x r (n ,  +,.I, 
where zz = y 2  - zr+,. By using these results, E(J2) can be obtained. In the case 
of infinite alleles, it becomes 

E(J2) = (") n!2" - z -  [81(6 + e1)clt2nlt3n2 
ZN 

R=O n r ( n + 4 +  e )  ( n )  n,!n2! 

+ e l e 3 ~ 3 ~ l n l + n ~ S 2 ~ 2 r ( n l  + e,>r (n2 + e,) + e2e3c3~1n1~2nz+n3  

x r (n l  + e m n ,  + e2) i ,  (30) 

because I C, + 01C2, I C5 -+ O1C,, and M c6 -+ B,C, as K -+ 

The corresponding formulae for the case of two classes of alleles are 
2 N  

n=o 
E(]) := (I  +a) z (","2n[e,~,tnr(n + e,) 

+ e2Czsnr(n + e,)]/r(n + 2 + e') , (31 1 

r (n ,  + e,) I. (32) + O z ( 6  + e2)c2snr(n+ e,) + 2 e l e z c z ~ ~  x ~ 

n,+ 1 
(n) n,! 

where C, and C, are given in formula (16). Note that formula (32) is written 
under the condition of K = m, but formula (31) holds for any K .  

Recessive selection 

formula (23).  The formulae corresponding to (31) and (32) are 
We consider two classes of alleles and use the same notations as those of 
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in which the last summation 
negative integers such that nl + n, = 2n. 

Numerical examples 
( A )  Mean heterozygosity: Table 3 shows the mean heterozygosity of a popu- 

lation under various types of selectioa. The parameters are specified in the table 
and the footnotes of the table. In all cases, the model of infinite alleles is used. 
The mean heterozygosity for the case of overdominant selection is computed by 
numerical integration of formula (25 ) ,  while those for the other cases are com- 
puted by using the above formulae. The case of neutral mutations is given for 
comparison. A number of interesting properties are observed. (1) Overdominant 
selection increases considerably the amount of mean heterozygosity, even if the 
heterozygote advantage is as tiny as 10-5. (2) In large populations, the mean 
heterozygosities for the cases of genic and recessive selection are much less than 
those for the case of neutral mutations. Thus, in large populations even slight 
purifying selection causes a great reduction in heterozygosity. This is particularly 
so in the cases of genic selection and confirms OHTA and KIMURA’S (1975) result 
by simulation. (3) The H value for the case of neutral mutations is somewhat 

z is over all vectors (2n)  = (n,,n,) of non- 
( zn )  

TABLE 3 

Mean heterozygosity under various types of selection 

4N 4x104 106 2x106 4x105 10’ 2x10’ 3X10e 4x10’ 
0 =4Nv 0.04 0.1 0.2 0.4 1 2 3 4 

Neutral mutations 0.0385 0,0909 0.167 0.286 0.500 0.667 0.750 0.800 
Overdominant selection* 0.0405 0.1038 0.208 0.384 0.636 0.765 0.820 0.850 
Recessive selection?: 

Case 1 0.0389 0.0928 0.168 0.257 0.354 0.435 0.489 0.541 
Case 2 0.0385 0,0911 0.167 0.273 0.322 0.360 0.380 0.398 

Case 1 (2 classes) 0.0383 0.0893 0.153 0.208 0 . M  0.308 0.361 0.407 
Case 2 (2 classes) 0.0385 0.0907 0.165 0.259 0.207 0.204 0.212 0.219 
Case 3 (3 classes) 0.0384 0.0904 0.163 0.253 0.237 0.220 0.227 0.234 

* The heterozygote and homozygote fitnesses are 1 and 1 - s, where s = 10-5. 
-I. Case 1: e, = O.le, e, = 0.9e, s = 10-5; Case 2: el = 0.01e, e, = 0.99e, s = 10-5. 
$Case 1: e, = O.le, e, = O.9e, s = 10-5; Case 2: e, = 0.01e, e, = 0.99e, s = I W ;  Case 3: 

Genic selection$: 

e, = O.Ole, e2 = 0.098, e, = 0.9e, s, = 10-5, S, = s1/2. 
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smaller than those for the cases of recessive selection if 4N is about 2 x IO5 or 
less. This seems peculiar but may be explained as follows. If mutations are 
neutral and N is small or intermediate, there is a high probability that the popu- 
lation is monomorphic at the time of observation. In the case of recessive selection, 
on the other hand, there exists some sort of mutation-selection balance because 
unfavorable mutations are only slightly selected against, and they occur more 
often than favorable mutations. This balance reduces slightly the probability of 
being monomorphic (see LI 1977) and, consequently, increases the mean hetero- 
zygosity to a small extent. As an example, when 4N = IO5, (P(O.99) is 6.373 for 
the case of neutral mutations, but 6.339 for the case of recessive selection with 
O1 = 0.1 O (case 1). Note that this balance is strongly affected by random drift, so 
that there is a high probability that the first-class alleles will become very rare 
or even absent from the population, if the proportion of favorable mutations is 
very small, say 1 % or less. This explains why the value for the second case of 
recessive selection is very close to that for the case of neutral mutations, if 4N 
is about 2 X IO5 or less. This also explains why @ is larger for the second case of 
recessive selection than for the first case of recessive selection when 4N is around 
4 X IO5. However, as the population size increases, the a value for the second 
case becomes smaller than that for the first case, because selection becomes 
effective and the proportion of unfavorable mutations is larger in the second case 
than in the first case. (4) In  the cases of recessive selection and the first case of 
genic selection, increases with increasing N ,  but in the second and third cases 
of genic selection first increases, then decreases and then increases again as N 
increases. 

The following is a simple explanation for this phenomenon. When N is small, 
selection is not effective and all alleles behave almost as neutral alleles, so that 
even unfavorable alleles contribute significantly to heterozygosity. But as N 
increases, unfavorable alleles are selected against and their contribution to 
heterozygosity is diminished while favorable alleles increase their contribution. 
Whether or not increases with increasing N depends on whether or not the 
increase due to favorable alleles can compensate for the decrease due to selection 
against unfavorable alleles. In  the case of recessive selection, the compensation 
seems always more than enough; a number of other parameter values were tried, 
but no contrary result was obtained. In  the case of genic selection, the compen- 
sation is not enough if the proportion of favorable mutations is much smaller 
than that of unfavorable mutations and N is small or intermediate, but it will 
eventually become more than enough as N becomes large. (5) &! is smaller for 
the first case than for the second case of genic selection when N is small, but the 
situation is reversed when N is large. That is, when the proportion of favorable 
mutations is reduced from 10% to 1 %, increases if N is small but decreases if 
N is large. In the third case of genic selection, the first and second classes repre- 
sent a further subdivision of the first class of case 1.  It is interesting to note that 
the value for case 3 always lies between those for cases 1 and 2. These obser- 
vations can again be explained in terms of the interaction between selection and 
random drift. 
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TABLE 4 

Mean heterozygosity under genic selection when there are I optimal states 

4N 4x104 2x105 4X105 10'' 2x108 3x10" 03 

Two classes* I = I 0.0388 0.166 0.260 0.202 0.190 0.190 0.190 
I = 2 0.0392 0.165 0.246 0.204 0.205 0.212 0.595 
I= 10 0.0420 0.167 0.225 0.254 0.309 0.356 0.919 

Three classesl. I = 1 0.0388 0.164 0.255 0.236 0.208 0.208 0.208 
I=2 0.0391 0.164 0.246 0.230 0.223 0.230 0.604 
I = 10 0.0420 0.167 0.232 0.270 0.323 0.369 0.921 

~ ~~ 

* Two classes: s = 10-5, the mutation rate to slightly deleterious alleles is 10-6, and the muta- 
tion rate to an optimal state is IW. 

f Three classes: s, = 10-5, sz = 0.5 x 10-5, the mutation rate to the third class of alleles is 
0.9 x 10-6, the mutation rate to the second class is 0.1 x 10-6, and the mutation rate to an optimal 
state is 10-8. 

Table 4 shows the mean heterozygosity for the case where the number, I ,  of the 
first-class allelic states is small rather than infinite. The first-class alleles are 
called the optimal alleles. In all cases the mutation rate from all other alleles to 
an optimal allele is 1 O-s. In the case of two classes of alleles, the number of allelic 
states of the second class is infinite with uz = 1W6. In the case of three classes of 
alleles, the numbers of the second- and third-class allelic states are infinite with 
uz = IO-' and u3 = 9 x lo-'. The mean heteroeygosity for N = is computed by 
using a deterministic model. Namely, in the case of two classes of alleles, the sum 
of the equilibrium frequencies of the second-class alleles is Q = uz/s = 
low5 = 0.1, and the alleles of this class do not contribute to homozygosity. The 
frequency of an optimal allele is (1 - q)/Z, so that the homozygosity of the 
population is f= I [  (1 - q )  /I] = (1 - q )  2 / Z  and the heterozygosity is = 1 - 7. 
The heterozygosity for the case of three classes of alleles for N = 00 is computed 
in a similar manner. It is seen that, if I = 1, the mean heterozygosity reaches the 
deterministic value when 4Ns is 20 or larger. This means that the effect of 
random genetic drift is negligible when 4Ns is of this order of magnitude. On the 
other hand, if I 2  2, the mean heterozygosity is still far from the deterministic 
value, even if 4Ns=30.  This is because the optimal alleles are neutral with 
respect to each other and their frequencies are much affected by random genetic 
drift. Note that in the two cases of I = 10, always increases with increasing N ,  
while in the other four cases first increases, then decreases and then increases 
again. The explanation is similar to that given above. 

( B )  Mean heterozygosity for many classes of mutations: So far we have con- 
sidered discrete classes of mutations, but in reality the fitness spectrum of muta- 
tions seems to be continuous (CROW 1972; KING 1972; BODMER and CAVALLI- 
SFORZA 1972). OHTA (1978) has recently studied the mean number of heterozy- 
gous nucleotide sites per individual and the fixation probability of new mutations 
for a case of continuous spectnun. Here I am concerned with the mean hetero- 
zygosity. Theoretically, regardless of the shape of the spectrum, the mean 
heterozygosity for the discrete case should approach that for the continuous case 
as the number of classes increases. In practice, however, we can compute only a 
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limited number of classes, as pointed out earlier. Thus, in order to get some idea 
about the mean heterozygosity for  the continuous case, we must make some 
simplifications. We consider only genic selection. Let the relative fitness of the 
best genotype be 1 and let s be the selection coefficient against any particular 
mutation. I t  is clear from the above computations that genic selection causes a 
great reduction in mean heterozygosity when s is considerably larger than 1/N 
(see Tables 3 and 4). We therefore consider only mutations with selection 
coefficient of 0 5 s i 1/N.  Assume that 6 = 4Nv = 0.1. We first make an effort 
to see how fast the mean heterozygosity for the discrete case approaches the value 
for the continuous case as the number of classes increases. To this end, we use a 
simple model in which the selection coefficient of mutations is uniformly dis- 
tributed over the interval [O,l/N]. If mutations are not divided into classes and 
are assumed to be equally fit (neutral), then H =  O / ( l  4- 6) =0.091. Next, we 
approximate the continuous model by a model of two equal classes of mutations 
with 6, = O2 = 6/2. It is easily computed that the mean selection coefficient 
against the first-class alleles is 1/(4N) and that against the second-class alleles is 
3/(4N). If we assume that the relative mean selection coefficient against the 
first-class alleles is 0, then that against the second-class alleles is 1/(2N). Putting 
these parameters into formula (31), we obtain p=O.O815. Third, we approxi- 
mate the continuous model by a model of three classes of mutations with 

= O2 = 6, = 8 /3 .  It is again easily computed that the relative mean selection 
coefficients against the first-, second- and third-class alleles are 0, 1/(3N) and 
2 / ( 3 N ) .  Using formula (29) , we obtain fi = 0.0796. For the models of four and 
five classes of mutations, we obtain B = 0.0789 and fl= 0.0786, respectively. 
These results suggest that the mean heterozygosities for the discrete models 
quickly approach a limit as the number of classes increases-the limit must be 
larger than 0.0779, the value for the first of the two models given below. Since 
the difference between 0.0786 and 0.0779 is small, we consider the model of five 
classes of alleles a good approximation to the continuous model. We now consider 
another two models of five classes of mutations. In the first model, 8, = 6/15, 
02=26/15, . . . , 8,=50/15, and the selection coefficients against the five 
classes are 0, 1/(5N), . . . ,4/(5N). The mean heterozygosity for this model is 
B = 0.0779. In the second model, 6, = 56/15, 62 = 46/15, . . . , d5  = 8/15, and 
the selection coefficients are again 0, l / (5N),  . . . ,4/(5N). The mean heterozy- 
gosity for this model is i? = 0.0827. Thus the value is somewhat larger for the 
case where the distribution of s is skewed toward 0 than for the case where the 
distribution of s is skewed toward 1/N. In  all cases, however, the values are at 
most 15 percent less than 0.091, the value for the model of strictly neutral muta- 
tions with B = 0.1. We note that the prevalent mode of selection in nature is 
probably less effective than genic selection. We may therefore conclude that, 
regardless of what the fitness spectrum of mutations may be, all mutations with 
s I 1/N are capable of contributing significantly to the mean heterozygosity of a 
population. Of course, the dichotomy between s I 1 / N  and s > 1/N is somewhat 
arbitrary, but it will make discussion easier when we consider protein poly- 
morphism later. 
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(C) Variance of heterozygosity: This variance has been used by NEI and his 
associates as a test statistic to test the neutral theory (NEI 1975; FUERST, CHAKRA- 
BORTY and NEI 1977). The procedure is as follows. Under the null hypothesis ob 
neutral mutations, 6 is estimated by equating the observed average heterozygosity 
to its theoretical expectation, g= e/(  1 4- e ) .  The 0 value is then used to compute 
the expected variance of heterozygosity by using 

V ( H )  = 2e/[(1+ e y ( 2  + e )  (3 + e ) ]  , 
which is derived under the assumption of neutral mutations (cf., STEWART 1976). 
The expected variance is compared with the observed variance of heterozygosity 
over the loci studied. If there is no discrepancy between the two variances, the 
neutral mutation hypothesis is thought to be tenable; otherwise it is rejected. In  
Table 5 we examine what selection intensity can be detected by this test pro- 

TABLE 5 

Variance of heterozygosity 

s = SI 1 4 6 10 

0.0473 
0.0144 
0.0144 
0.0475 
0.0145 
0.01% 
0.0478 
0.0146 
0.014 
0.169 
0.0393 
0.0394 
0.1663 
0.0394 
0.0394 
0.1670 
0.0395 
0.0395 
0.4992 
0.0417 
0.0417 
0.4997 
0.0417 
0.0417 
0.5002 
0.0416 
0.0416 

0.0386 
0.0114 
0.0120 
0.0395 
0.0118 
0.0122 
0.0453 
0.0136 
0.0139 
0.1415 
0.0345 
0.0355 
0.1448 
0.0354 
0.0360 
0.1586 
0.0374 
0.0382 
0.4743 
0.0453 
0.0440 
0.4805 
0.0448 
0.0435 
0.4839 
0.0427 
0.0432 

0.02564 
0.00694 
0.00815 
0.02336 
0.006 18 
0.00746 
0.03714 
0.01047 
0.01 154 
0.10014 
0.02442 
0.02744 
0.09289 
0.02264 
0.02584 
0.13147 
0.03028 
0.03368 
0.41272 
0.05083 
0.04844 
0.40661 
0.05243 
0.04876 
0.42606 
O.OM18 
0.04765 

0.01204 
0.00229 
0.00392 
0.01056 
0.00180 
0.00345 
0.02713 
0.00659 
0.00860 
0.04804 
0.00888 
0.01462 
0.04205 
0.00700 
0.01295 
0.09667 
0.01977 
0.02668 
0.23710 
0.03641 
0.04729 
0.20748 
0.03026 
0.04458 
0.32220 
0.03526 
0.05077 

20 
~ 

0.00589 
0.00071 
0.00194 
0.00544 
0.00061 
0.00180 
0.01933 
0.00376 
0.00621 
0.02345 
0.00277 
0.00748 
0.02166 
0.00237 
0.00693 
0.06949 
0.01166 
0.02027 
0.11400 
0.01216 
0.03033 
0.10544 
0.01048 
0.02857 
0.23798 
0.02353 
0.0473 5 

* Three classes of alleles: el = O.Ole,  e, = 0.090, e, = 0.98, S, = S,/2. 
+ Two classes of alleles under genic selection: e, = O.Ole, e, = 0.990. 

Two classes of alleles under recessive selection: e, = 0.018, O2 = 0.990. 
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cedure. The values of wi and V ( H i ) ,  i = 1, 2, 3, are computed by using those 
formulae given above, whereas V(Hz)t  is computed from by using NEI’S 
(1975) procedure under the null hypothesis of neutral mutations; nl and V ( H l )  
refer to the case of three classes of alleles under genic selection, I?, and V ( H , )  to 
the case of two classes of alleles under genic selection, and E ,  and V ( H , )  to the 
case of two classes of alleles under recessive selection. I t  is seen that in all of the 
cases where 4Ns is 10 or larger, V(H,) ’  deviates considerably from V ( H i )  , par- 
ticularly in the case of ,three classes of alleles under genic selection. Thus, it 
seems that this test procedure is able to detect a selection intensity of this order. 
On the other hand, if 4Ns is around 4 or less, there is virtually no difference 
between V (Hi) ’ and V ( Hi). When 4Ns = 6, two discrepancies are appreciably 
large, while others are not. When 4Ns is of this order of magnitude, the discrep- 
ancy between V ( H i ) t  and V ( H i )  depends on the mutation rate and the type of 
selection. Notice that except for some cases with 6’ = 1, V ( H i )  is usually smaller 
than V(H,)’ .  Since the majority of mean heterozygosities observed so far are less 
than those for  the cases with 6’ = 1, we may conclude that purifying selection 
tends to reduce the variance of heterozygosity. 

DISCUSSION 

To emphasize the point that even slight selection has a drastic effect on genetic 
variability when the effective population size N is large, all the above numerical 
results were computed for small s values such as s = The results, however, 
are also applicable to other combinations of N and s, because the effect of selection 
can be considered in terms of the product Ns when 14Nsl << N .  For example, 
the mean heterozygosity should be almost the same for both the case of s= lo-’ 
and N = lo2 and that of s= and N = lo5, provided that N u  is the same for 
both cases. Note, however, that when dealing with slight selective differences, we 
may need to consider one additional factor-the random fluctuation of selection 
intensities. This factor reduces the effectiveness of selection when the mean, S, of 
s is larger than its variance V ( s ) .  But, when V ( s )  becomes larger than S, it 
increases the random fluctuation of gene frequencies and consequently reduces 
the amount of genetic variability maintained in a population (WRIGHT 1948; 
KIMURA 1955; KARLIN and LEVIKSON 1974; NEI and YOKOYAMA 1976), though 
under certain circumstances it may produce a stabilizing effect on gene frequen- 
cies (JENSEN and POLLACK 1969; GILLESPIE 1973; KARLIN and LEVIKSON 1974; 
and others). 

In  the present study all the statistical properties of the maintenance of genetic 
variation are derived under the assumption that every mutation creates a new 
allele-the model of infinite alleles. This model seems to be appropriate if allelic 
variants are identified at the nucleotide or codon level. At present, however, 
genetic variation is mostly studied by electrophoresis. At the electrophoretic 
level, alleles (electromorphs) presumably mutate only to their nearby states so 
that mutations are to some extent recurrent and back mutations may occur. Thus, 
there are some differences between these two levels of detectability and caution 
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should be taken when applying the present results to interpret polymorphism 
data collected by electrophoresis. The distribution of allele frequencies at the 
electrophoretic level has been studied only  for the case of neutral mutations 
(KIMURA and OHTA 1975). KIMURA and OHTA’S results show that in this case 
the distribution obtained under the model of stepwise change of electrophoretic 
mobility is similar to that obtained under the model of infinite alleles when 8 < 1. 
Presumably the previous statement that under balancing selection the distri- 
bution tends to be non-U-shaped holds as well at the electrophoretic level. In  the 
case of purifying selection, it is not clear whether or not the distribution at the 
electrophoretic level is similar to that under the model of infinite alleles. How- 
ever, as in the latter model, it is unlikely that the distribution can be U-shaped 
if 8 is much larger than one, unless a special arrangement is made of the mutation 
rates and selection coefficients for the electromorphs. The rate of increase 09 mean 
heterozygosity with increasing population size is known, however, to be consider- 
ably slower at the electrophoretic level than that predicted by the model of 
infinite alleles, regardless of whether there is selection or not ( OHTA and KIMURA 
1973,1975; LI 1976). 

In applying the present results to data, we should also take into consideration 
the effect of variation in mutation rate over loci. For neutral mutations, this 
effect has recently been studied by NEI, CHAKRABORTY and FUERST (1976). Their 
conclusions are that this effect reduces the mean of heterozygosity, but inflates 
the variance, and that a U-shaped distribution can be obtained for a larger range 
of (average) 4Nv values than. that for the case of constant mutation rate; how- 
ever, it is a tilted U-shape if the mean of 4Nv over loci is larger than unity. Pre- 
sumably these conclusions hold qualitatively for the cases of balancing selection 
and purifying selection. It should, however, be stressed that this effect causes no 
major change in the conclusions drawn under the assumption of constant muta- 
tion rate. 

I now discuss the implications 04 the present findings for protein poly- 
morphism. For ease of discussion, I first summarize the general patterns of genic 
variation that have emerged from the huge amount of gene-frequency data 
collected by electrophoresis (a compilation of available data has recently been 
made by FUERST, CHAKRABORTY and NEI 1977). (1) A very striking general 
pattern of genic variation is that the observed distribution (histogram) of allele 
frequencies is U-shaped for every species studied (unpublished result of CHAKRA- 

BORTY, FUERST and NEI). (2) When the observed distributions are compared 
with those expected under the model of selective neutrality, about one-third of the 
140 species examined show a significant excess of rare alleles, but only one species 
shows a significant deficiency of rare alleles (unpublished result of CHAKRA- 
BORTY, FUERST and NEI) . (3) There seems to be an upper limit for the observed 
average heterozygosities (LEWONTIN 1974; NEI 1975; unpublished result of NEI, 
FUERST and CHAKRABORTY) . An hypothesis of the maintenance of genic variation 
is tenable only if it can explain these observations at least reasonably well. 



3 78 W-H. LI 

Interestingly, none of these observations appear to be explicable by the 
hypothesis of balancing selection. First, the general pattern of U-shaped disiri- 
bution is not expected under balancing selection (cf.,  Figures la  and b). Second, 
balancing selection should lead to deficiencies rather than excesses of rare alleles. 
This has been shown for overdominant selection, but should also be true for other 
types of balancing selection. Finally, the third observation has been taken by 
LEWONTIN (1974) and by the selectionists (e.g., AYALA 1972; MILKMAN 1975) 
as strong evidence against the neutralist view, but is actually more incompatible 
with the selectionist view, for under balancing selection the average heterozy- 
gosity should be larger than under selective neutrality. For instance, the numeri- 
cal examples given in the previous two sections show that even very slight over- 
dominant selection, as small as s = I 0-5, increases the average heterozygosity 
considerably as compared to the case of no selection. Because of these difficulties, 
we are reluctant to accept balancing selection as an important cause for the 
maintenance of genic variation. 

We now consider the neutralist explanation. The selectionists strongly main- 
tain that the neutral theory is wrong because the average heterozygosities in the 
Drosophila willistoni group (AYALA et al., 1974) and in Escherichia coli (MILK- 
MAN 1975) are much less than would be expected from the balance between 
mutation and random genetic drift. While the neutralists believe that this diffi- 
culty is resolvable, they disagree with each other to some extent on how to resolve 
it. On the one hand, OHTA (1974, 1976) thinks that some modification of 
the original theory is necessary and has proposed a modified hypothesis-the 
hypothesis of slightly deleterious mutations. On the other hand, NEI thinks that 
no modification is necessary because the long-term effective size of these species 
may be small or these species may have gone through a bottleneck in the recent 
past (NEI 1975, 1976; NEI, MARUYAMA and CHAKRABORTY 1975). 

Let us first examine NEI'S resolution. The general pattern of U-shaped distri- 
bution strongly supports NEI'S view that the effective sizes of natural populations 
are rather limited, because if the effective size is .very large, a U-shaped distri- 
bution is unlikely to be obtained under any hypothesis. However, to explain the 
apparent upper limit 04 observed average heterozygosities by the neutral theory, 
the 6' values for the species studied must be at most of the order of 0.6. This is 
because the highest average heterozygosity observed so far is 0.309 (in Otior- 
rhynchus scaber, SUOMALAINEN and SAURA 1973), from which we obtain 6' = 0.60 
by using the formula = 1 - 1 /~ '1+28  derived under the model of stepwise 
mutation (OHTA and KIMURA 1973). (A somewhat larger 6' value is obtained if 
variation of mutation rate over loci is taken into account (NEI, CHAKRABORTY 
and FUERST 1976) .) Whether this condition is reasonable or not is difficult to tell 
because we are unable to determine the long-term effective size of populations. 
This hypothesis, however, can be tested by considering some other aspects of 
genic variation, such as the variance of heterozygosity, the incidence of rare 
alleles, etc. A detailed analysis of available gene frequency data shows that in 
most species the observed variance of heterozygosity agrees reasonably well with 
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that expected under the neutral theory (FUERST, CHAKRABORTY and NEI 1977). 
The excess of rare alleles in the D. willistoni group has been taken by OHTA 
(1976) as an indication of the prevalence of slightly deleterious mutations. How- 
ever, this observation is not necessarily incompatible with the neutral theory 
because it is also explainable by recent polpulation expansion (NEI and LI 1976). 

Next let us examine OHTA’S hypothesis that the genic variation of a population 
is mostly due to slightly deleterious mutations. The essence OE OHTA’S (1976) 
theory is that in small populations slightly deleterious alleles behave just like 
neutral alleles, while in large populations “the stable mutation-selection balance 
is reached and this provides an upper limit to heterozygosity.” OHTA (1976) 
believes that her hypothesis can account for the relative uniformity of observed 
average heterozygosities over various species ( LEWONTIN 1974) and the excess 
of rare alleles in some species. The present findings seem to support her conten- 
tions. However, her assumption (OHTA 1976) that large natural populations such 
as the D. willistoni group species are at the stable mutation-selection balance 
leads to the follolwing two difficulties: (1) This assumption implies that the €’ 
values for these populations are very large. [OHTA (1976) seems to agree with 
AYALA et al. (1974) that the population sizes of the D. willistoni group are 
extremely large, though she may not accept their estimate od 0 = 400 for these 
species.] But a U-shaped distribution is unlikely to be observed if 0 > > 1. Thus, 
under this assumption it is difficult to explain the general pattem of U-shaped 
distribution. ( 2 )  Because of the stable mutation-selection balance, evolution is 
supposed to stop in large populations, as OHTA (1976) herself noted. In practice, 
however, studies on genetic distance suggest that even in large populations such 
as the D. willistoni species (AYALA et al., 1974) gene substitution has proceeded 
continuously with time. 

OHTA’S purpose in making the assumption of mutation-selection balance is to 
explain why the observed average heterozygosity is relatively uniform over 
various species surveyed ( LEWONTIN 1974) and why there is an apparent upper 
limit for average heterozygosity (OHTA 1974, 1976). I believe that these two 
problems can be resolved without making this assumption, but by simply assum- 
ing that the genic variation of a population is mainly due to slightly deleterious 
mutations. Consider the first problem. To simplify the argument, let us assume 
that only genic selection is operating. In a population of effective size N ,  muta- 
tions can be divided somewhat arbitrarily into the following two classes: muta- 
tions with selective disadvantage s 5 1/N and mutations with s > 1/N. As seen 
earlier, the mean heterozygosity due to mutations with s I 1/N is comparable 
to the case of neutral mutations, but that due to mutations with s > 1/N is much 
less than what is expected under selective neutrality. Obviously, as N increases 
the proportion of the first-class mutations decreases, though the proportion of the 
second-class mutations increases. For example, if N = lo3 the first class includes 
all mutations with s I but if N = lo4 it includes only all mutations with 
s I lo-’. When N increases from lo3 to lo4, the mean heterozygosity due to 
mutations with s 5 increases, but that due to mutations with s > lo-‘ 
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decreases. Therefore, the G values for N = IO4 may not be much larger than 
that for N = lo3. The rate of increase of a with increasing N depends on how s 
is distributed, but should be much slower than that for strictly neutral mutations, 
unless the distribution of s is very skewed toward 0. This conclusion should also 
be qualitatively true for other types of purifying selection. Thus the first problem 
is resolved. 

to become very large if N becomes 
exceedingly large. Then why is there an apparent upper limit for the observed 
average heterozygosities? My answer is that it is due to restricted effective sizes. 
As mentioned above, this view is strongly supported by the general pattern of 
U-shaped distribution. AYALA et al. (1974) estimate that the effective size for the 
species of the D. wiZZistoni group is about 1O1O and u = IO4 so that 4Nu is a h u t  
400. The fact that the distributions of allele frequencies for these species are 
U-shaped strongly suggests that this is a gross overestimate. Although presently 
the actual total size of each of these species may be large, it should be noted that 
the effective population size in the long evolutionary history is generally much 
smaller than the total size. (The human population is such an example.) As NEI, 
MARUYAMA and CHAKRABORTY ( 1975) have emphasized, if a population occasion- 
ally goes through a bottleneck the effective size is greatly reduced. I t  is interesting 
to note that even the size of a laboratory population that is maintained at a 
constant temperature and humidity fluctuates greatly (NOGU~S 1977). For a 
similar reason, MILKMAN’S (1975) estimate of N = 1 O 1 O  for E .  coli for the last 
40 million years has been challenged by NEI (1976) and WILSON (1976). At 
any rate, these estimates of effective sizes are highly speculative, since we do not 
even know their present actual sizes. 

The advantage of this modified version over OHTA’S original hypothesis is that 
it removes the difficulties created by the assumption of mutation-selection 
balance. In particular, it now can explain the general pattern of U-shaped 
distribution at least as well as the original neutral mutation hypothesis and the 
selectionist hypothesis, because purifying selection has the highest potential to 
maintain a U-shaped distribution, as shown above. Furthermore, like OHTA’S 
hypothesis, it can better account for the excess of rare alleles in some species than 
the original neutral mutation hypothesis and the selectionist hypothesis. Hence 
the present hypothesis seems to explain better the general patterns of genic 
variation than other current ones. 

However, the difference between KIMURA’S and my hypothesis is very subtle. 
KIMURA (1968) called an allele “almost neutral” when 2Ns << 1. This defi- 
nition seems too strict. The present results suggest that a more reasonable 
definition of almost neutrality is s 5 1/N, for the effect of random drift remains 
strong for mutations with selection coefficients of this order or smaller. I consider 
my hypothesis equivalent to this extended form of KIMURA’S hypothesis. My 
modified version of the neutral mutation hypothesis is similar to OHTA’S, but I 
do not assume that large natural populations are at the stable mutation-selection 
balance. I consider this balance unlikely to occur in nature because as the selec- 

In the above model it is possible for 
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tive difference becomes very small it is unlikely to stay constant and to play a 
decisive role so as to maintain a stable balance. 

I am greatly indebted to M. NEI for his constant help and valuable suggestions. I also thank 
G. A. WATTERSON, W. J. SCHULL, J. L. KING and R. C. LEWONTIN for helpful comments and 
P. FUERST for showing me the electrophoretic data that he has compiled. This study is supported 
by Public Health Service grant GM 20293 and National Science Foundation grant DEB 77-09120. 
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