Skip to main content
Genetics logoLink to Genetics
. 1978 Nov;90(3):517–530. doi: 10.1093/genetics/90.3.517

Abnormal Mitochondrial Genomes in Yeast Restored to Respiratory Competence

K M Oakley 1, G D Clark-Walker 1
PMCID: PMC1213904  PMID: 365681

Abstract

When crosses are performed between newly arisen, spontaneous petite mutants of Saccharomyces cerevisiae, respiratory competent (restored) colonies can form. Some of the restored colonies are highly sectored and produce large numbers of petite mutants. The high-frequency petite formation trait is inherited in a non-Mendelian manner, and elimination of mitochondrial DNA from these strains results in the loss of the trait. These results indicate that abnormal mitochondrial genomes are sometimes formed during restoration of respiratory competence. It is hypothesized that these abnormalities result either from recombination between mitochondrial DNA fragments to produce molecules having partial duplications contained on inverted or transposed sequences, or else recombinational "hot spots" have been expanded.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chanet R., Williamson D. H., Moustacchi E. Cyclic variations in killing and "petite" mutagenesis induced by ultraviolet light in synchronized yeast strains. Biochim Biophys Acta. 1973 Oct 12;324(2):290–299. doi: 10.1016/0005-2787(73)90146-9. [DOI] [PubMed] [Google Scholar]
  2. Clark-Walker G. D., Miklos G. L. Mitochondrial genetics, circular DNA and the mechanism of the petite mutation in yeast. Genet Res. 1974 Aug;24(1):43–57. doi: 10.1017/s0016672300015068. [DOI] [PubMed] [Google Scholar]
  3. EPHRUSSI B., HOTTINGUER H. On an unstable cell state in yeast. Cold Spring Harb Symp Quant Biol. 1951;16:75–85. doi: 10.1101/sqb.1951.016.01.007. [DOI] [PubMed] [Google Scholar]
  4. Faye G., Fukuhara H., Grandchamp C., Lazowska J., Michel F., Casey J., Getz G. S., Locker J., Rabinowitz M., Bolotin-Fukuhara M. Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie. 1973;55(6):779–792. doi: 10.1016/s0300-9084(73)80030-6. [DOI] [PubMed] [Google Scholar]
  5. Flury U., Mahler H. R., Feldman F. A novel respiration-deficient mutant of Saccharomyces cerevisiae. I. Preliminary characterization of phenotype and mitochondrial inheritance. J Biol Chem. 1974 Oct 10;249(19):6130–6137. [PubMed] [Google Scholar]
  6. Handwerker A., Schweyen R. J., Wolf K., Kaudewitz F. Evidence for an extrakaryotic mutation affecting the maintenance of the rho factor in yeast. J Bacteriol. 1973 Mar;113(3):1307–1310. doi: 10.1128/jb.113.3.1307-1310.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Schweyen R. J., Steyrer U., Kaudewitz F. Mapping of mitochondrial genes in Saccharomyces cerevisiae. Populations and pedigree analysis of retention or loss of four genetic markers in Rho-cells. Mol Gen Genet. 1976 Jul 23;146(2):117–132. doi: 10.1007/BF00268080. [DOI] [PubMed] [Google Scholar]
  8. Shapiro L., Grossman L. I., Marmur J., Kleinschmidt A. K. Physical studies on the structure of yeast mitochondrial DNA. J Mol Biol. 1968 May 14;33(3):907–922. doi: 10.1016/0022-2836(68)90327-6. [DOI] [PubMed] [Google Scholar]
  9. Sriprakash K. S., Molloy P. L., Nagley P., Lukins H. B., Linnane A. W. Biogenesis of mitochondria. XLI. Physical mapping of mitochondrial genetic markers in yeast. J Mol Biol. 1976 Jun 25;104(2):485–503. doi: 10.1016/0022-2836(76)90283-7. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES