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ABSTRACT 

Maximum likelihood equations have been derived for estimation of map 
distance and interference from two-point and ranked tetrad data. The estima- 
tors have been applied to data €rom Saccharomyces cerevisiae and Schizosac- 
charomyces pombe. S. cerevisiae consistently shows quite strong interference 
over the mapped genome. In striking contrast, S. pombe consistently shows 
much weaker interference and many crosses exhibit negative interference. 
In neither species was there a conspicuous tendency for intervals spanning a 
centromere to show less interference than those that did not. Since the amount 
of recombination per microgram of DNA in the two species is similar, the 
difference in interference characteristics seems to be a reflection of some funda- 
mental difference in the recombination process of the two species. 

HE maximum likelihood method is widely used to estimate genetic param- 
eters, especially linkage values. It has the very desirable property of extract- 

ing from the data the greatest amount of information available concerning the 
parameter in question, and so yields an estimate with the smallest variance 
( MATHER 195 7).  MATHER and BEALE ( 1942) applied this method to tetrad data, 
but their analysis was limited to cases where no more than two exchanges 
occurred between the linked loci and interference was not treated. A general 
treatment for any number of exchanges and for interference is presented here. 

For organisms that produce tetrads, there are two types of data obtainable: 
those from two-point crosses and those from crosses with several segregating loci 
positioned such that the total number of exchanges between the ends of the inter- 
val can be more-or-less precisely determined. In the first case, the data are in the 
form of numbers of parental ditype (PD), nonparental ditype (NFD), and 
tetratype (T) tetrads. In the second case, the tetrads are classified as to “rank,” 
that is, as to whether they have resulted from 0, 1, 2, . . . r exchanges in the 
interval. 

DISCUSSION 

Two-paint crosses, interference not estimated 
In a genetic interval marked only at each end, three types of tetrads are pos- 

sible, and we cannot determine directly the number of exchanges that have 
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occurred in any given tetrad, because the three types do not uniquely represent 
a given number of exchanges. Tetrads with no exchanges will of course be scored 
as PDs, but so also will those with two or more exchanges, the net effect of which 
is to produce the equivalent of two-strand double crossovers. Tetratypes arise 
from bivalents that had a single exchange, or from those with two or more 
exchanges, the net effect of which is to produce the equivalent of three-strand 
doubles. Nonparental ditypes arise from four-strand doubles as well as from 
higher orders, the net effect of which is to produce the equivalent of four-strand 
doubles. 

In the absence of chromatid interference, for each four-strand double, there 
should be on average two three-strand doubles that will give tetratypes, and 
another two-strand double that will give a parental ditype. With each further 
exchange, those tetrads that would have been PD or NPD will be converted to T, 
while half of those that would have been T are converted with equal frequency 
into either PD or NPD. These relationships have been expressed by SHULT and 
LINDEGREN (1956) in the form 

X(PD) = T  
X(NPD) = T  

X(T) = T/2 + PD/4 + NPD/4 

where X represents an exchange in a tetrad that would otherwise have been PD, 
NPD, or T. 

If the interval is so short that the probability of exchanges greater than two is 
zero or very small, then the map distance can be calculated quite reliably from 
an expression derived by PERKINS (1949) : 

map distance (cM) = 1/2 [ 2+f$J,yT] 100. 

The frequency of tetratypes for any number of exchanges, r, was given by 
MATHER (1935) as 

2 1 
AT) = J[ 1 - (-- - J T ]  . 

Since with a large number of exchanges the proportions of PD and NPD should 
be equal (in the absence of chromatid interference), their proportions can be 
expressed as 

~ ( P D )  = ~ ( N P D )  =-{I 1 --[I 2 - (-3) 1 '  I}=-+-(,--) 1 1  1 '  . (2) 
2 3 6 3  2 

When the interval is long enough so that there is a significant probability of 
exchanges greater than two, we assume that the probability of tetrads with 0, 1, 
2, . . . I exchanges between the two loci is given by that Poisson distribution which 
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has a mean equal to the mean exchange frequency in the interval (BARRATT 
et al. 1954) : 

where 2x is the mean exchange frequency per tetrad in the marked interval; x 
is the map length of the interval in map units x I O 2  (i.e., the mean exchange 
frequency per chromatid) ; and I is the number of exchanges in the interval 
(tetrad rank). 

The frequency of the three tetrad types is obtained by multiplying ( 1 )  and 
( 2 )  by the sum of the appropriate Poisson terms: 

* (2x)' P(PD) = p ( O )  + ----e--2x [p(PD)] 
r! 9-=2 

P(NPD) = 2 -  (2x)r  cZx [p(NPD)] 
r! 9 - 1 2  

x- * (2x)re-2x [p(T)] . 
r!  r=1 

P(T) = 

Since 

these three expressions reduce to: 

1 1  1 
6 2  3 

P(PD) = m, = - + -e-22 + -e-3r (4) 

( 5 )  
1 1  1 
6 2  3 P (NPD) = m, = - - --e--22 4- - 4 - 3 "  

2 2  
3 3 '  

P(T) = m3 =- - -32 

These equations are the same as those obtained by HALDANE (1931) following 
a different line of reasoning, except that his exponents were -x and '-3x/2 
because he used x as the mean exchange frequency per bivalent (not per 
chromatid). 

Expressions (4), ( 5 )  , and ( 6 )  are the expectations used for maximum likeli- 
hood estimation of x. The log likelihood expression is 

logL = a,logm, + a210gm2 + a310gm3 , 
where a,, a,, and a3 are the observed numbers of PD, NPD, and T tetrads, respec- 
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tively. Differentiating and equating to zero gives the likelihood equation of 
estimation: 

(7) 
e-2X e-2x 2e-33 dL - 

dx ml m2 m3 -al - (1 + + az - (1 -cx) + a 3 - = O  . -- 

This equation can be solved by iteration and the standard error of x obtained 
from the calculations used in the solution (MATHER 1957). 

Ranked data, interference not estimated 

When several closely spaced markers are available along the length of a 
chromosome, so that double crossing over between them is absent, the number of 
tetrads with various numbers of exchanges between the end markers can be 
determined. The expected distribution of ranks can be calculated from (3). 

The value of x could be estimated from the p ( 0 )  term (the proportion with 
no exchanges), but that procedure will not utilize the information available 
from tetrads of higher rank. Since tetrads of rank 4 or higher will be rare or 
absent in most cases, only the terms p(O) ,  p( l ) ,  p(2),  and p ( 3 )  and the sum of 
the terms from p ( 4 )  to p ( r )  need be considered. Thus the expectations can be 
written as: 

p (0) = m, = e-28 
p(1) = m, = 2xc2x 
p(2) = m2 = 2xZe-2" 

p ( 3 )  = m3 = -23e-22 

p ( 4 .  . .r) = m, = 1 - c 2 ~ [ 1  + 2x + 2x2 + -231 . 

4 
3 

4 
3 

The log likelihood expression is: 

logL = aologmo + a,logm, + azlogm2 + a310gm3 + a,logm, . 
Differentiating this expression and equating to zero gives the likelihood equation 
of estimation: 

1-22 2-22 3-22 8 x3@" 
- -2a0 + a, ___ + a2 - + a3 ~ +a43 -- -0, (8)  

where ao, a,, a2, a3, and a4 are the observed numbers of tetrads with 0, 1, 2, 3, 
and 4 or more exchanges, respectively. 

The usual way of estimating x from ranked data is to calculate the mean 
exchange frequency for  a sample of tetrads. An example from Saccharomyces 
is given in Table 1. The average exchange frequency is 2194/2123 = 1.03344, 
which represents 22 in the Poisson expression (3). Hence x = 0.51672. The 
estimate obtained from (8) is 0.51688, the slight difference being due to round- 
ing errors and to the truncation of the rank classification at 4. Hence, the usual 
procedure leads to the maximum likelihood estimate. 

dL 
dx X X X m4 
-- 
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TABLE I 

Analysis of ranked tetrads f rom Saccharomyces cerevisiae (daia f rom MORTIMER and FOGEL 1974) 

Calculated Calculated 
Tetrad Number of Number of number of number of tetrads, 
rank tetrads exchan es tetrads (Poisson), with interference 
( R , )  (4 ( R ' J  no interference (k = 0.22785) 

0 333 0 755.32 333.00 
1 1406 1406 780.25 1438.73 
2 367 734 402.99 303.62 
3 14 42 138.76 42.71 
4 f  3 12 46.67 4.94 

2123 21 94 2122.99 2123.00 

This result means that an explicit solution should exist for the nontruncated 
form of the derivative of the log likelihood expression, which can indeed be 
derived: 

1 dL - 
dx X 

-2a,+- [a1(l-22)  +a2(2-22s) +a3(3-2x)  f... -- 

1 + a n ( n - 2 ~ > ]  = -2a0 + - [a, + h2 + . . . nan] - [Za, + 2aZ + . . .2an], 
X 

1 = -2(ao + a, + . . .G) + - [al + 2a2 + . . .nun] = 0 . 

Thus, 

1 a, +ea, + . . . m,, - 1 BRiai 
2 a,+a,+ ... an 2 Xai * 

x=- --- 

Using 2x = 1.03344, the expected distribution of tetrad ranks can be calculated 
from (3). The fourth column of Table 1 shows that there are far too many 
observed tetrads of rank 1, and too few of ranks 0, 2, 3, 4 and higher. Since the 
probability of the observed distribution being due to chance is less than 0.001, 
the data indicate strong chiasma interference. 

Two-point crosses, interference estimated 
The model for interference adopted here was presented by BARRATT et al. 

(1954). I t  is biologically reasonable, and can be handled rather easily mathe- 
matically. A model with several similar features for use with ordered tetrads has 
been developed by KUENEN (1962). With the BARRATT et al. (1954) model, the 
probability of nonexchange tetrads remains the same as with no interference, but 
interference progressively decreases the probability of tetrads of higher ranks in 
favor of those of lower ranks. This is achieved by multiplying each Poisson term 
except the p ( 0 )  by k"l, where k is an interference factor with a minimum of 
value 0 (complete interference). When k = 1 there is no interference, and values 
greater than one are indicative of negative interference. 
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If the probability of nonexchange tetrads is not changed by interference, then 
the sum of probabilities of ranks greater than zero must still equal l-p(0) even 
with interference. This will be the case if each term greater than zero is multi- 
plied by k"' and also by a factor S, which is the sum of terms of rank greater 
than zero without interference divided by the sum of terms of rank greater than 
zero with interference. This ratio is: 

In a manner analogous to the case with no interference, the expectations for 
the three tetrad types can be expressed as: 

* (22) - 2 2  Sk r-1 CP(pD)] P(PD) = p ( O )  + 2 -----e 
r! T=2 

P(NPD) = (22)' 
2 ----czz Sk lr-l [ p (NPD) ] 

r! r=z 

These expressions reduce to: 

1 
6 

(1 - e?") (e2k2 + 2e+" - 3 )  
e z k x -  1 P(PD) = ml = c z z  + - ___ 

1 
6 

(1 - c2") (ezko + 2ek" - 3) 
- _ _ _ ~  

1 (?2kX - P(NPD) =mz= 

- 2 (1 - e-2x) (e--"") (eakz - 1 1 
1 ezkx - 3 

P(T) = m3 = 7 

which are the expcctations used for estimation. 

There are now two ways to proceed. One way is to make use of the fact that 
when the number of parameters to be estimated is the same as the number of 
degrees of freedom, then the equations for estimation can be obtained by setting 
the expectations equal to the observations (BAILEY 1951). In this case we have: 

ml = al/N 
m2 = az/N 
m3 = a3/N 

where N is the total number of tetrads. Simultaneous solution of any two of these 
three equations for x and k will give the maximum likelihood estimates. 

The second method is the usual one of taking the partial derivatives of the log 
likelihood expression with respect to x and IC, and finding values of these param- 
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eters which make the partial derivatives simultaneously equal to zero. Thus we 
have: 

2ckX - 5eZkx + 3 
ezkx - 1 --- 

ax m, 3 

I) 1 
mz 3 

e2kx + 2e4” - 3 
1 +a, - {ka;O+cZ2[  ezkx- 

a3 2 ek2 (e3k2 - 1 ) 
ezkx - 1 + - - { -ka/3 + 2e-22 [ 

m3 3 (9) 

where 

e-kx (1 - cZx) 2e3kx - 3eZkx + 1 
eZh - 1 , and p =  e2kx- 1 

Iterative solution of these simultaneous equations can be accomplished as 
described by MATHER (1957), using efficient corrections after each round. Stan- 
dard errors can be obtained from the inverse of the information matrix, using 
values obtained in the last round of iteration. 

Because of the nature of tetrad data and the conditions of the interference 
model, the estimate of x obtained by (9) and (IO) is equal to -(1/2)lnp(O) 
(i.e., p ( 0 )  = eZ”), where p ( 0 )  is the proportion of tetrads with no exchanges, 
that is, PD- NPD/N. For example, a Saccharomyces cross involving the markers 
mat1 and his4 on chromosome 3 (see Table 2) produced 97 PD, 7 NPD, and 
174 T. The maximum likelihood estimate of x with interference is 0.56390, which 
is -(1/2)1n(90/278). ( k  for this data is 0.29483, while x estimated without 
interference is 0.58340. x calculated from the PERKINS (1949) formula is 
0.38843.) This simple relation can be used instead of (9) and (IO) to calculate x. 

The relation x = -(1/2)ln p ( 0 )  is essentially the formula derived by SHULT 
and LINDEGREN (1956) for calculating map distances in units they called 
stranes.” In their notation, the right side of the expression was multiplied by 

100 to convert “stranes” into units comparable to centimorgans, e.g., stranes 
(D) = -50 In (a,-a,/N). 

The expected proportion of NPD’s as a function of T’s in two-point crosses 
without interference was derived by PAPAZIAN (1952) : 

L L  

r 3T V 3  NPD = (1/2) - 1 -T- (1 - T) ] . 

If interference is operative, the proportion of NPDs in the sample will decrease, 
so that with complete interference there will be no NPDs whatsoever. An esti- 
mate of interference might be derived as the ratio of the observed proportion of 
NPD’s to the proportion expected on the basis of the PAPAZIAN (1952) formula 
(hereafter called the NPD ratio). With no interference, this ratio will be 1, 
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while with complete interference it will be 0. It turns out that the interference 
values estimated by equations (9) and (10) are almost the same as the NPD 
ratios. For the matl-his4 data, k is 0.29482, while the NPD ratio is 0.23007. The 
regression of the NPD ratios against k for 28 Saccharomyces crosses and 30 
Schizosaccharomyces crosses gave a coefficient of 1.0657, with 95 % confidence 
limits of 1.0539 to 1.0784. Thus, the k values for  two-point crosses obtained by 
the maximum likelihood equations are essentially measures of the discrepancy 
of the observed proportion of NPDs compared to the proportion expected on the 
PAPAZIAN (1952) formula. It is probable that the regression is not exactly one 
because of the finite sample sizes. 

For two-point crosses, interference will increase the proportion of T tetrads 
at the expense of NPDs. Since nonexchange tetrads contain no information about 
interference, the information about k comes from the T and NPD tetrads. When 
there are no NPD's, k cannot be estimated by (9) and (10) because of the divi- 
sion by zero that occurs. 

Ranked data, interference estimated 
As in the case of ranked data without interference, we consider only five terms 

of the Poisson series. The probability of nonexchange tetrads is again based on the 
premise that the p ( 0 )  term is not changed by interference. Terms above p ( 0 )  
are multiplied by Sk"l. Thus, in a manner analogous to no interference, the 
expectations can be written as: 

p ( 0 )  = mo = e-2x 

2 
e2kx - 1 3 [ 1 + k x + - k 2 x 2 ]  . 2kx (1 - e-2x) p ( 4 . .  . r )  = m4 = 1 - &x- 

Differentiating the log likelihood expression with respect to x and k ,  and 
equating the partial derivatives to zero gives the likelihood equations of 
estimation: 

aL 
ax ml enkx - 1 - = -2ao + 5 2 k  [ 2xe-2x - e-'" + 1 
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1 [ 2 7 k x - % ~ k x + 2 ]  a3 4 
eZkX- m3 3 

e k e z h  - 3eZk* + 3 
1) 

- - 4 2 x 3  (1 -E-"") [ ___ - 
(eeka: - 

239 

(11) 

where E equals 

2 k ~ 2 ~ "  (1 - e-,") 
( 8 8  - 1 I Z  

As before, these equations are solved simultaneously for x and k, and the stan- 
dard errors are obtained from the calculations used in solution. 

With interference, the probability of tetrads of ranks greater than zero is: 

This relation can be used to calculate the rank distribution after an estimate 
has been obtained for x and k. For the data in Table 1, solution of the above two 
partial derivatives yielded x = 0.92622 +- 0.02515 and k = 0.22785 * 0.02160. 
The expected distribution of ranks using these estimates is given in column 5 of 
the table, the number of rank 0 tetrads being set at 333.00. Although the cal- 
culated distribution fits the observations better, there is a deficiency in rank 3 
and an excess in rank 2, so that x2, with 3 degrees of freedom, is highly signifi- 
cant ( p  < 0.001). This suggests that an improved interference model might be 
derived by multiplying terms above p ( 0 )  by some factor other than for 
instance, by k@-l. 

As in the case of two-point crosses with an estimate of interference, the values 
of x obtained from the equations for ranked data with interference are equal to 
- (1/2)ln p ( 0 )  because of the assumptions of the model. 

Estimation of linkage parameters for tetrad data for Saccharomyces and 
Schizosaccharom yces 

Table 2 contains estimates of map distance with and without interference for 
some of the extensive two-point data of Saccharomyces for which at least 100 
tetrads are available. A Wang model 720C Programmable Calculator was used. 
Iterations were continued until values of x and k were found that caused the 
estimators to differ from zero by less than The solutions were confirmed 
to be those that made the logarithm likelihood expressions a maximum, because 
slight changes of x or k on either side of the estimated values made the expres- 
sions smaller (in this case more negative) . 
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TABLE 2 

Estimates of map distance and interference for selected two-point crosses of Saccharomyces 

x + s.e. x ( i )  + s.e. k + s.e. Reference Chromosome Gene pair X(P) 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

15 

17 

cyhl-gall* 
gall-lys2 
lys2-tyrl 
tyrl-his7 
SUP45-lys2 
SUP45-tyrl 

his4-natP 
his4-leu2 
leu2-matlC 
matl-thr4 
thr4-MAL2 

SUP35-arol 
trpl-cdcZ* 
aspl-trp4 

hisl-trp2 
ura3-hom3 * 

SUPII-his2 

trp5-ade6* 
ade5,7-tyr3 
tyr3-lys5 
cyh2-trp5 
leul-ade6* 
MALI-ade3 

petl-CUP1 
thrl-CUPl 
CUPI-pet3 

his6--2ysI* 

SUP4-SUP7* 

metl4-met1 
metl-MAL4 

serl-ade2 
ade2-cyh4 
petl7-ade2 

mt2-pha2 
pet2-pha2 

0.198 
0.518 
0.352 
0.425 
0.259 
0.185 

0.388 
0.175 
0.345 
0.214 
0.295 

0.208 
0.460 
0.180 

0.248 
0.347 

0.219 

0.632 
0.638 
0.086 
0.440 
0.339 
0.474 

0.466 
0.243 
0.358 

0:435 

0.522 

0.440 
0.289 

0.273 
0.326 
0.469 

0.373 
0.473 

0.232 
0.828 
0.516 
0.751 
0.331 
0.174 

0.583 
0.199 
0.453 
0.249 
0.389 

0.239 
0.878 
0.209 

0.311 
0.555 

0.258 

0.820 
1.031 
0.080 
0.745 
0.479 
0.707 

0.794 
0.323 
0.543 

0.628 

0.834 

0.610 
0.337 

0.384 
0.4% 
0.7M 

0.518 
0.681 

0.034 
0.079 
0.045 
0.1 19 
0.053 
0.033 

0.057 
0.016 
0.033 
0.020 
0.037 

0.041 
0.171 
0.026 

0.035 
0.063 

0.043 

0.040 
0.1 78 
0.016 
0.104 
0.034 
0.104 

0.095 
0.0% 
0.057 

0.051 

0.039 

0.096 
0.047 

0.042 
0.OM 
0.090 

0.069 
0.094 

0.230 
0.795 
0.500 
0.705 
0.327 
0.174 

0.563 
0.198 
0.446 
0.248 
0.382 

0.237 
0.809 
0.208 

0.308 
0.532 

0.256 

0.833 
1.010 
0.080 
0.705 
0.467 
0.685 

0.747 
0.318 
0.524 

0.61 1 

0.801 

0.597 
0.335 

0.375 
0.419 
0.728 

0.506 
0.664 

0.033 
0.042 
0.034 
0.063 
0.048 
0.035 

0.039 
0.016 
0.027 
0.020 
0.032 

0.041 
0.075 
0.026 

0.032 
0.043 

0.042 

0.095 
0.084 
0.017 
0.058 
0.026 
0.065 

0.049 
0.021 
0.04.0 

0.035 

0.063 

0.068 
0.045 

0.036 
0.037 
0.050 

0.053 
0.062 

0.337 
0.488 
0.245 
0.194 
0.258 
1.817 

0.294 
0.370 
0.429 
0.4Q4 
0.294 

0.468 
0.204 
0.284 

0.277 
0.115 

0.386 

1.333 
0.7M 
2.355 
0.265 
0.271 
0.495 

0.271 
0.1 12 
0.210 

o.ffi1 

0.498 

0.545 
0.633 

0.098 
0.397 
0.367 

0.386 
0.551 

0.341 
0.108 
0.101 
0.111 
0.260 
1 . a 6  

0.112 
0.21 6 
0.127 
0.205 
0.14 

0.477 
0.116 
0.287 

0.198 
0.082 

0.392 

0.698 
0.241 
2.464 
0.119 
0.091 
0.197 

0.096 
0.079 
0.105 

0.116 

0.159 

0.258 
0.380 

0.098 
0.181 
0.1 19 

0.198 
0.208 

b 
b 
b 
b 
C 

C 

a 
b 
b 
b 
b 

C 

d 
d 

a 
b 

b 

a 
b 
b 
b 
b 
b 

a 
b 
b 

b 

C 

d 
d 

b 
b 
d 

d 
d 

z ( P )  = map distance calculated from formula of PERKINS (1949); z + s.e. = map distance 
and standard error estimated from maximum likelihood equation (7); z ( i ) ,  k = map distance 
and interference estimated from equations (9) and (10). Map distances are given in Morgans. 
Intervals spanning a centromere are indicated with an asterisk. In certain cases changes have 
been made in gene nomenclature to conform to more recent usage. 

References: (a) HAWTHORNE and MORTIMER 1960; (b) MORTIMER and HAWTHORNE 1966; 
(c) HAWTHORNE and MORTIMER 1968; (d) MORTIMER and HAWTHORNE 1973. 
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Several points emerge from a review of the data in Table 2. First, the PERKINS 
(1949) formula considerably underestimates the map distance for large genetic 
intervals because a considerable amount of triple and higher order crossing over 
is not taken into account. Second, the estimates for z ( i )  are somewhat smaller 
than those for z, in keeping with expectations of the interference model. Third, 
except for three cases where k exceeds one, the other estimates of this factor are 
usually less than 0.5. The average k for all 35 crosses is 0.482; if the three excep- 
tional crosses are omitted, the average is 0.355. This is similar to values of k that 
have been obtained by plotting (R. K. MORTIMER, personal communication). 
Fourth, the regression of k on z ( i )  for this data is -0.3757; however, this is not 
significantly different from zero. Therefore there is no tendency for k to vary in 
a consistent manner with length of the genetic interval under consideration. 
Fifth, the standard errors of the estimates of k are quite large. This is due to the 
fact that the NPD tetrads contribute the most information to his estimate, but 
there are usually relatively few of them. 

The only region of the genome where it seems possible that k values consis- 
tently different from the average may occur is in the left arm and the proximal 
part of the right arm of chromosome 7. The crosses trp5-ade6, ade5,7-tyr3, and 
tyr3-Zys5 have k values considerably higher than average, and higher values also 
occurred in several other crosses for which fewer than 100 tetrads were analyzed. 
However, not all crosses in this region have high k values, for example, Zys5- 
cyh2, cyh2-trp5, and leul-ade6. The reduced interference in this region may be 
real and a more detailed investigation may well prove rewarding. 

There is no conspicuous tendency for intervals spanning a centromere to show 
higher k values than those which do not. The average k for the nine crosses of 
this type in Table 2 is 0.438. If the trp5-ade6 cross with the exceptionally high k 
of 1.333 is omitted, the average k is 0.326. 

Ranked tetrad data are much rarer than two-point data. Through the kindness 
of R. K. MORTIMER and SEYMOUR FOGEL, 1 was fortunate to obtain access to the 
immense amount of ranked data from their gene conversion studies (Table 3) .  
The crosses usually involve well over 100 tetrads, often several thousand. The 
pooled data from chromosome 6,  for instance, are based on 1,076 tetrads, those 
for chromosome 8 on 14,907. 

The map distance for  the centromere-CUP1 interval on the right arm of 
chromosome 8 is very uniform, except for diploid 5313 (where it is much higher), 
and diploids 5420,5420-1,5420-1-1, and 5475 (where it is lower) . The k values 
for these crosses also vary from the norm in the same direction. The higher z 
value for 5313 results because rank 2 and 3 tetrads are relatively more frequent 
than in other crosses, while the lower z values for the other diploids are due to 
a smaller than usual proportion of rank 2 tetrads. Though different from the 
rest, the data for the 5420 diploids are quite homogeneous. 5420 is heterozygous 
arg4-3/+, 5420-1 was derived from this strain by a conversion event that pro- 
duced a homozygous ARG strain, and 5420-1-1 was derived from the latter as 
a single cell isolate. 
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TABLE 3 

Estimates of map distance and inferfersence from ranked data of Saccharomyces 
(data from MORTIMER and FOGEL, personal communication) 

Chromosome Diploid I + s.e. z ( i )  + s.e. k + s.e. 

6 4335 
4338 
4339 
4350 
4351 
4352 
Pooled 

8 M141 
M150 
3653 
5246 
5275 
5276 
5276+ 
5276-3 
5308 
5310 
5313 
5420 
5420-1 
5420-1-1 
5475 
5497 
Pooled' 

0.306 
0.302 
0.331 
0.363 
0.326 
0.286 
0.318 

0.546 
0.543 
0.509 
0.504 
0.533 
0.51 1 
0.515 
0.520 
0.561 
0.51 7 
0.847 
0.450 
0.426 
0.453 
0.282 
0.508 
0.523 

0.029 
0.028 
0.030 
0.032 
0.031 
0.027 
0.021 

0.014 
0.013 
0.013 
0.012 
0.015 
0.013 
0.015 
0.01 5 
0.015 
0.018 
0.023 
0.016 
0.014 
0.021 
0.01 1 
0.009 
0.004 

0.427 
0.390 
0.467 
0.531 
0.479 
0.394 
0.443 

1.078 
0.993 
0.904 
0.916 
0.979 
0.929 
0.928 
0.942 
1.002 
0.941 
1.354 
0.790 
0.699 
0.76 1 
0.389 
0.862 
0.941 

0.043 0.154 
0.039 0.285 
0.046 0.188 
0.053 0.198 
0.049 0.1 19 
0.040 0.122 
0.018 0.180 

0.038 0.204 
0.031 0.242 
0.031 0.226 
0.028 0.205 
0.037 0.229 
0.032 0.214 
0.034 0.223 
0.035 0.224 
0.036 0.273 
0.042 0.21 9 
0.066 0.494 
0.034 0.164 
0.027 0.181 
0.043 0.198 
0.016 0.108 
0.021 0.256 
0.009 0.232 

0.059 
0.086 
0.061 
0.059 
0.049 
0.055 
0.025 

0.013 
0.014 
0.01 6 
0.013 
0.017 
0.015 
0.017 
0.01 7 
0.018 
0.020 
0.030 
0.018 
0.019 
0.027 
0.021 
0.012 
0.004 

~~~~~~~ ~~ 

* Diploids 5313,5420-1, 5420-1-1, and 5475 omitted. 
The intervals marked for chromosome 6 were centromere-his2-SUP6-meiZO; for chromosome 

8, centnnnere-urg4-thrl-CUPl, except for  crosses 542Q, 5420-1,5420-1-1, and 5497, which were 
centromere-petl-arg4-thri-CUPi. z + se .  = map distance and standard error estimated from 
equation (8) ; z ( i )  + s.e. and k + s.e. = map distance and interference with standard errors 
estimated from equations (1 1) and (12), respectively. 

The data for the centromere-net10 interval on the right arm of chromosome 6 
are also quite homogeneous, and the k values are about the same as those for 
chromosome 8. 

Table 4 contains a selection from the extensive two-point data published by 
KOHLI, et al. (1977) for Schizosaccharomyces. Intervals were chosen that cov- 
ered nearly all the mapped regions of the three chromosomes and for which 
usually 100 or more tetrads were available. It is obvious that there is much less 
interference in this yeast than in Saccharomyces, the average k for the 30 crosses 
being 1.332. If the two atypical crosses with k values of 4.691 and 7.693 are 
eliminated, the average k is 0.985. Since, however, 102 and 337 tetrads, respec- 
tively, were scored for the two crosses, the high k values may be significant. 
Although occasional crosses show low k values characteristic of Saccharomyces, 
for the most part all chromosomes have much less interference. This consistency 
leaves no doubt that the two yeasts differ fundamentally in this respect. 
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TABLE 4 

Esiimates of map distance and interference for selected two-point crosses of 
Schizosaccharomyces pombe (data from KOHLI et. al. 1977) 
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Chromosome Gene pair .dP) I + s.e. x ( i )  + s.e. k + s.e. 

1 cyhl-cdcl 
cdci-leu2 
hid-leu2 
sup3-aro3 
ura2-ade2 
ade2-de4 
lys3-ural 
ural-lys5 
prol-ade3 
ade3-pro2 

2 ade7-ura5 
ade7-his3 
glul-his3 
his3-matl* 
ts124-mat1 
leul-his5 
his5-leu3 
adel -his4 
his4-trpi 
ade8-arg4 

3 adel0-furl 
adel O-aded * 
f url-sin2 * 
furl-min5+ 
aded-min5 
tsl5-argl 
argl-ade5 
argl-aro4 
trp3-aro4 
ade5-wee1 

0.521 
0.500 
0.142 
0.602 
0.321 
0.703 
0.210 
0.328 
0.435 
0.651 

0.121 
0.554 
0.518 
0.676 
0.677 
0.264 
0.495 
0.395 
0.710 
0.286 

0.161 
0.294 
0.237 
0.221 
0.054 
0.319 
0.537 
0.552 
0.194 
0.522 

0.803 0.124 
0.688 0.105 
0.114 0.025 
0.751 0.101 
0.358 0.030 
1.220 0.194 
0.199 0.004 
0.394 0.054 
0.495 0.018 
0.968 0.083 

0.134 0.004 
0.694 0.059 
0.668 0.077 
1.127 0.034 
0.961 0.094 
0.282 0.024 
0.620 0.102 
0.424 0.030 
1.090 0.227 
0.313 0.038 

0.175 0.009 
0.317 0.036 
0.254 0.030 
0.224 0.028 
0.OM 0.008 
0.431 0.063 
0.84Q 0.042 
0.563 0.110 
0.196 0.032 
0.690 0.143 

0.777 0.070 
0.677 0.071 
0.115 0.028 
0.762 0.070 
0.357 0.028 
1.205 0.078 
0.199 0.014 
0.328 0.W 
0.497 0.068 
0.967 0.044. 

0.134 0.012 
0.698 0.043 
0.665 0.055 
1.110 0.044 
0.976 0.051 
0.282 0.024 
0.618 0.077 
0.497 0.109 
1.106 0.108 
0.312 0.037 

0.175 0.029 
0.317 0.036 
0.253 0.030 
0.224 0.029 
0.044 0.009 
0.423 0.052 
0.827 0.071 
0.580 0.092 
0.196 0.033 
0.685 0.100 

0.545 0.196 
0.698 0.277 
4.691 4.101 
1.350 0.538 
0.888 0.277 
0.869 0.234 
1.771 0.491 
0.716 0.379 
1.087 0.530 
0.985 0.185 

0.229 0.230 
1.117 0.259 
0.911 0.277 
0.837 0.133 
1.261 0.338 
0.951 0.337 
0.921 0.417 
1.249 0.238 
1.227 0.674 
0.894 0.426 

0.581 0.591 
0.974 0.429 
0.892 0.469 
1.177 0.628 
7.693 6.074 
0.302 0.216 
0.645 0.212 
2.523 2.655 
1.151 0.868 
0.850 0.454 

Symbols same as in Table 1 

As with S. cereuisiae, there is no strong tendency for intervals spanning a 
centromere to show higher k values than others. A total of 12 such intervals are 
available in the published literature (four of them are indicated in Table 4). The 
average k is 1.110. 

The question arises as to whether the two species have about the same total 
amount of recombination per unit of DNA, but differ only in the distribution of 
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crossovers, or whether the level of recombination differs. This can be approached 
by calculating the map units per microgram of DNA. Taking the amount of 
DNA per haploid spore for Saccharomyces and Schizosaccharomyces as 2.1 X 1 O-' 
and 1.46 x 1Ck8 pg, respectively (HARTWELL 1970; BOSTOCK 1970), and the total 
map units as 3700 and 1300 (FOGEL and MORTIMER 1971; KOHLI et al. 1977), 
one finds about 1.76 x compared to 0.89 x 10l1 map units per pg DNA for 
the two organisms. In  view of the fact that the S. pombe map will certainly be 
lengthened by future work, perhaps even doubled, it does not seem likely that 
the total amount of recombination is considerably different in the two. 

MORTIMER and FOGEL (1974) found that in Saccharomyces gene convertants 
recombined for their flanking markers showed interference in adjacent intervals, 
but those convertants that retained the parental outside marker combinations did 
not. They also found that half the conversion events were associated with adja- 
cent marker recombination. Since k values greater than one are a sign of negative 
interference, parallel gene conversion studies with S. pombe should be very 
profitable. 

It is a pleasure to acknowledge the most helpful discussions I have had with SUBODH JAIN, 
who derived the explicit solution for equation (8), and with MICHAEL TURELLI. Thanks are also 
due R. K. MORTIMER and SEYMOUR FOGEL for  the use of their ranked tetrad data and to DAVID 
PERKINS and JULIAN ADAMS for their comments on the manuscript. This work was supported by 
funds assigned to California Agricultural Experiment Station Project CA-D*-GEN-3161-H. 
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