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ABSTRACT 

Equilibria are determined for the two-locus model in a partially selfing 
population when one locus is neutral and the other locus is heterotic. At an 
equilibrium point, the frequency of heterozygotes at the neutral locus is greater 
than that expected from one-locus theory, even if the heterotic locus is on a dif- 
ferent chromosome. Thus, the neutral locus also appears to be heterotic. The 
magnitude of this effect is determined for several different proportions of 
selfing and amounts of recombination. 

IT is tacitly assumed in the theory of neutral alleles that all loci are neutral 
or at least that the relevant behavior of the neutral locus is unaffected by 

selected loci. The correctness or incorrectness of this assumption can in part be 
determined by the construction of a two-locus model in which one locus is neutral 
and the other locus is selected. For example, in an infinite, random-mating popu- 
lation the frequencies of the genotypes at a neutral locus are in Hardy-Weinberg 
proportions even if it is linked to a heterotic locus (provided there is some recom- 
bination between the two loci). Therefore, if the expected Hardy-Weinberg 
proportions from one-locus theory are used to determine the presence or absence 
of selection, the neutral locus in the two-locus model does indeed appear to be 
neutral. However, this is not true in a finite population where there is apparent 
selection at the neutral locus (associative overdominance) due to randomly 
generated linkage disequilibrium (OHTA and KIMURA 1970). 

In this paper, the equilibrium points of the two-locus model with partial selfing 
are determined when one locus is neutral and the other is overdominant. It is 
shown that at an equilibrium point the frequency of heterozygotes at the neutral 
locus is greater than that expected from one-locus theory even if the neutral locus 
is not on the same chromosome as the selected locus. Therefore there appears to 
be selection at the neutral locus in the two-locus model, and the apparent selection 
coefficients are estimated by again using one-locus theory. The magnitude of this 
effect for different amounts of selfing and recombination are studied in some 
detail. 

The results reported here are suggested by several previous papers on both 
completely selfing and partially selfing populations. In a completely selfing popu- 
lation, BARTLETT and HALDANE (1 935) showed that the rate to homozygosity for 
Genetics 92: 305-315 May, 1979. 
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a neutral locus is decreased when it is linked to a balanced lethal. This certainly 
can be interpreted as saying that there appears to be apparent overdominance 
at the neutral locus. In a partially selfing population with two neutral loci, the 
frequency of double heterozygotes is greater than the product of the two marginal 
frequencies of the heterozygotes, f(AaBb) >f (Aa)  X f  (Bb) ,  at equilibrium (BEN- 
NETT and BINET 1956; WEIR and COCKERHAM 1973). Since the conditional fre- 
quency of the Bb genotype when associated with the genotype Aa is greater than 
the marginal frequency of Bb, selection for the genotype Aa would result in an 
increase in the frequency of the genotype Bb. Therefore, if there is overdominance 
at the neutral locus. This is developed more formally in COCKERHAM and 
RAWLINGS ( 1967) with a one-locus model and in OHTA and COCKERHAM ( 1  974) 
using a two-locus model with deleterious mutants occurring at one locus. 

THEORY 

One-locus theory: In this section, the one-locus theory of selection in a partially 
selfing population with two alleles (WORKMAN and JAIN 1966; KIMURA and 
OHTA 1971) is quickly reviewed. Let the gametic frequencies of the two alleles, 
A and a, be noted by z1 and x2 and the genotypic frequencies of AA, Aa, and aa, 
by ul, uP7 and u3, respectively. If the relative fitness values of the three genotypes 
AA, Aa, and aa are denoted by l-tl, 1 ,  and l-t, and the proportion of selfing 
by S, then the equations for the three genotypes in the next generation before 
selection has occurred are 

where 

Wx,= u1(1-t1) + ( 2 4 2 )  

w = 1 - Ultl - U3t2 . 
WZ, = U3 ( I - t z )  + (U&?) 

Providing that tl and tz are not zero, the equilibrium is 

f i ,  = f 1 2  + &&f Liz = 2f1& ( 1 - f )  Li3 = f , 2  + &&f 

t1- t z f  t z  - t f  f, = & = 
(tl+tZ) (1-f) ( t l + t Z )  (1-f) 

where f is a root of 

2kf2 - [ 2 ( l - k )  - ( l . -2k)S]f  + (1-2k)S = 0 (3) 

and 
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The relevant root is 

f =  {2(1-k) - (1-2k)S--[2(1-k) - (1 - -2 l~ )S]~  -8k(l--2k)S}/4. (4) 
The average fitness at equilibrium is 

W =  1 - k ( l+ f )  . 
By solving this equation for f and substituting it into ( 3 ) ,  it is seen that W must 
satisfy 

2wz- {I + (1-2k) ( l+S)}  w+ (1-2k)S=0. ( 5 )  

The root of this equation corresponding to (4) is 

For neutral alleles, t, = tz = 0 and 
W = {I + (1-2k) (I+&') + g[l + (1-2k) (l+S)]2- 8(1-2k)S}/4. 

S 
f== 

(CROW and KIMURA 1970). 
The stability of the equilibrium ( 2 )  is considered by KIMURA and OHTA (1971) 

by looking at the two endpoints, x, = 0 and x2 = 0. It  is shown that if t,, t, > 0 
f,, 2, > 0, then the two endpoints are unstable, so that the nontrivial equilibrium 
is stable. 

Two-locus theory: In this section the recursion equations for the ten genotypes 
are given for the two-locus model in a partially selfing population where it is 
assumed that one locus has a heterozygotic advantage and the second locus is 
neutral. The equilibria are derived and their stability is investigated. 

Let the frequencies of the ten genotypes be denoted by 

Genotype AABB AABb AAbb AaBB AB/ab Ab/& Aabb aaBB aaBb aabb 
Frequency u1 u2 v3 u4 u5 u6 u7 us ug ul0 

and the frequencies of the four gametes AB, Ab, aB and ab by zll, xlo, xol and zoo, 
rsespectively. As before, it is assumed that the relative fitness values of the geno- 
types AA , Aa are l-t, 1 and l-t, and that S is the proportion of 
selfing. f i e  recombinaticGvalue between the two loci is denoted by r. The 
recursion equations for the ten genotypes in the next generation before selection 
has occurred are ~ v e n  in Table 1. 

The equilibria can be obtained by assuming that at equilibrium: first, the 
frequencies of the genotypes for the A locus are not affected by the neutral locus, 
i.e., the equilibrium values for the A locus are those given in equation ( 2 )  and 
second, there is no linkage disequilibrium, i.e., 211foo-floio~ = 0 and u5 = us. 
Third, the frequency o€ the B allele denoted by p, is equal to the frequency of 
the B allele in each of the three genotypes at the A locus, i.e., 

and aa 

p = vl+u,+v,+ (1/2) (uZ+u5+L)f,+u$) = 

vl+ (1/2)vZ - - u4f (1/2)(v5+v6) - - US+ (1/2)u9 
Vl+ U 2 f V 3  U4+V,+u6+u7 ~S+vS+ulO 
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TABLE 1 

Recursion equations for the genotypic, frequencies, 

After the equilibria have been obtained, it is then necessary to prove that these 
three assumptions are true. They are shown to be tme  i f .  tl = tz during the 
analysis of the stability of the equilibria. However, since the B locus is neutral, 
i t  is intuitively clear that they are also true if tl # tz. 

Using these three assumptions and the equations for vz", us' and vg' given in 
Table 1, the equilibria can be determined and are 

- *  
$1 = i21p - coc,/2 $2 = COC, U3 - u1q - COC1/2 

(7) 
h 

v4=u^,p-co 35 = = CO s 7  =22q - CO 
A 

= u";p - COc2/2 $9 = cOc2 $10 = ̂u3q - cOc2/2 
where 

2a12zpq (1 -S) w C -  
O- w- (1/2)[(l-r)Z+r2]S 

(21/2z) { w - (1/2) [ ( 1 7 )  *+13]S} + r(  I-r)S 
w- (1/2> ( I - t d S  

(&/&) { w - (1/2) [ (l-r)2f?]S} + r (I--r)S 
w- (1/2) (1- fz )S  

c, = 

cz = 

and q = 1- p. 

to transform to the variables 
For the purpose of analyzing the stability of these equilibria, it is cQnvenient 

U1 = v,+v2+v, U2 = V4+U,+V,+V, U3 = vs+vLl+v,0 

us = u,-2v2+v, US = u4-v5-v6+v1. U10 = vs-zv9+u,o 
U4 = v1-v3 U5 = v4-v7 U6 = VS-vlO U7 = V5-v6 

Xi = ~ n + Z i o  Z z  =xoi+Zoo x3 =zi1-zio 2 4  = r t , i - ~ o o  . 



E4 

E5 (l-r)/l I E i  : (1+S) (1-9) 1/2 0 

(1-S) (1- t )  1 (1-S) (1-t) 

(l-S) (1-t) 0 -(l-S) (1-t) 1-2r 

[]=w/2[ 0 1/2 (l+S) (1-t) -(1-%)/2 E 6  

TABLE 2 

Recursion equations for the transfoimed genotypic frequencies 

= AE 
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The four eigenvalues of A are the roots of 

A.2 - (1/2W) [ 1 + (l+S) (1 - t ) lh  4- (1/2W2) (1-t)S = 0 ( 8 4  

and 

A2 - (1/2W) [I .- 2r + (l+S) ( l - t ) ] A  + ( 1/2WZ) (i-t>S(l-2r) = 0 (8b) 
The roots of (8a) are 

A1 = 
1+ (13-8) (1-t) +d[l+ (I+S) (IGy]'-8(l-t)S= 

4w 

and 

l ~ . ( I + S ) ( l - t )  -~~lX7)(1- t>]z-8(1-- t )S 
4w 

For S > 0, 0 I A, < 1 since 1, + (14-S) (1-t) > 0 and h, = 1. The necessary 
and sufficient conditions for  the roots of (Sb) to be less than one in absolute value 
(GOLDBERG 1958) are 

(9a) 

X I  = 

1- (1/2W)[1-2r+ (l+S)(l-t)] +(1/2W2)(1--t)S(1-2r) > O  

1 + (1/2W) [I -2r+ (I+S) ( I - t ) ]  + (1/2W?) (i-t)S(l-2r) > O (9b) 

(9c) 1 - (1/2W') (l-t)S(I--2r) > 0 . 
It  is seen that (9b) i s  always satisfied since all the terms are positive. To see that 
(9a) and (9c) are always satisfied, notice that (8b) reduces to (8a) when r=O. 
Thm, if r=O, the left hand side of (9a) is equal to zero (since X,=l) and the left 
hand side of (9c) is greater than zero (since Xlh2 < 1). Since the partial deriva- 
tives with respect to r of the left hand side of both equations are positive, both 
(9a) and (9c) are always satisfied if r>O. Therefore, both roots of (8b) are less 
than one in  absolute value. 

A right eigenvector of X1 = 1 is 5, = (GI, zi,, fi,, 0) T. Thus after a pertubation 
from an equilibrium, the system goes to a new equilibrium given by 

where C is a constant determined by the pertubation, and therefore 

zi,* = fi, ( p - q )  + fi1C = a, (p" - q*)  
zi,* = iiz ( p - q )  + fizc = $2 (p* - q*)  
a,* = zi3(p-q) + fi3c = &(p* - q*)  
a,* = fi, = 0 
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where p* and q* are the new equilibrium frequencies of B and b. This proves 
assumptions two and three used in determining the equilibria for the two-locus 
model whcn there are symmetric fitness values. 

Lastly, it can be seen from Table 2 that if all the other variables are in equi- 
librium, then the equations for us’, us‘, and U , /  are linear and involve only them- 
selve;. The recursion equations for the deviations about the equilibrium, e i  

(i=8,9,10) are 

(1-tl)S (3 /2 )r ( l -~ )S  0 

&I = I::] =1/2w [ 0 2r(l--r)S 0 j [+3& 

Em‘ 0 ( 3 / 2 ) ~ ( 1 - ~ ) S  (1-fz)S &io’ 

The eigenvalues of B are 

@I= (1/2W) (l-t1)S p2 = (l /W)r(l-r)S p3 = (1/2W)(l-tz)S , 
which are all less than one since from the equation for U*’ in (1) it can be seen 
that S/2 < W at equilibrium. 

In  summary, the stability analysis shows that i f  tl = t2 = t, then the equilibria 
are the set of all points given by ( 7 )  with O<p<l. For a particular value of p, 
the equilibrium is stable but not asymptotically stable (there exists one eigen- 
value of one). However, the set of equilibria is the limit set of the difference 
equations in Table 1,  i.e., after a pertubation the solution will converge to one of 
the equilibria in the set as time goes to infinity. 

APPLICATIONS 

From the equilibria frequencies (7). the frequency of the heterozygotes at  a 
neutral locus linked to a locus at which there is a heterozygotic advantage can be 
determined. If this is compared to the expected frequency of heterozygotes at  a 
neutral locus using one-locus theory, it is found that there is an excess of hetero- 
zygotes. Thus there is an apparent heterozygotic advantage at the neutral locus, 
and the “fitness values” of the genotypes of the neutral locus is calculated using 
one-locus theory. The extent and magnitude of this phenomenon is studied in 
this section. For convenience. the fitness values at the A locus are assumed to be 
symmetric, t=tl=tZ>O, throughout this.section, which implies that fl = 2, = 1/2. 

The frequency of heterozygotes at the neutral locus is 

1 2(1-S) (2-S) w (St/2) 
=2p4 2-s 4[W- (S/2) (1-t)] [,+w.- (S/2) [(l--r)Z+r2] 

In  order for there to be an excess of heterozygotes, the inequality 
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must hold since 2pq 2(1-s) is the expected frequency of heterozygotes for a 

neutral locus from one-locus theory. Since ( 1-I-) + r2 2 0.5 with equality 
holding if and only if r = 0.5, the inequality (1 1) can be replaced by 

2-s 

(2-S) w (St/2)\ ) 2 1 
4CW- (S/2> (1-11 ( 2 +  w- (S/4) 

which upon rearranging becomes 

s (2W2- [I + [l+(S/2)](1-t)]W+ (S/2) (1-t)} 5: 0 . 
Both W - (S/2) (1-t) and W - (S/4) are greater than zero since W > (S/2). 
But from ( 5 )  

2W2- [1+ (1+S) (l-t>]w+s(l-t) = 0 , 

(S2/2) (1-t) (W-1) I 0 

with equality if and only if t=l. Therefore, there is always an excess of hetero- 
zygotes at the neutral locus over what is expected from one-locus theory unless 
t=l and r=0.5. 

Let the apparent fitness values of the genotypes BB, Bb, and bb be l-sl, I ,  
and 1-s2, respectively The apparent selection coefficients s1 and z2 can be 
obtained from the generalized inbreeding coefficient at the B locus, f ,  and the 
frequencies of the B and b alleles, p and q, at equilibrium. From (10) 

thus, the inequality further reduces to 

L } (12) (1/2) (1-S)W w - (S/2) (1-2r) 
W - (S/2) [ (1 -r)  2+r23 -b + w- (S/2) (1-t) f = 1 -  

and from (3) 

Using the definition of 

(l+?>i 
i=Fm-7 and s2= 

( l + f ) X  
=- 

are obtained. Notice that 
B locus, but both s1 and sz do. 

does not depend on the frequency of the alleles.at the 
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In order to obtain some feeling for the magnitude of the apparent fitness values 
at the B locus, = s1 = s, = 2k (assuming p = q = 1/2) is plotted against t = 2k 
at the A locus for S equal to 0.5, 00.9 and 0.99 for r =  0.01 (Figure I) ,  r =  0.1 
(Figure 2) and r = 0.5 (Figure 3). It should be emphasized that there is signifi- 

0 

FIGURE 1.-The apparent fitness value S = 2k at the neutral B locus plotted against the 
fitness value t = 2k at the A locus for r = 0.01 for the three proportions of selfing S = 0.5, 0.9, 
and 0.99. 

t 
FIGURE 2.-The apparent fitness value S = 26 at the neutral B locus plotted against the 

fitness value I = 2k at the A locus for r = 0.1 for the three proportions of selfing S = 0.5, 0.9, 
and 0.99. 
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FIGURE 3.-The apparent fitness value ŝ  = 2 i  at the neutral B locus plotted against the 
fitness value t '=  2k at the A locus for r = 0.5 for the three proportions of selfing S = 0.5, 0.9, 
and 0.99. 

cant apparent selection at the neutral locus even if the selected locus is on a 
different chromosome, i.e., r = 0.5. The greatest effect for r = 0.5 shown in 
Figure 3 is with S = 0.99 and t 0.5. The apparent fitness values at the neutral 
locus in this Ere s  ̂= sI = ss = 0.21 1 .  

DISCUSSION 

It is shown in  this paper that if there is only a single locus at which there is a 
heterozygotic advantage, there is an apparent selection not only at closely linked 
loci, but a t  any locus in the whole genome. Presumably, if two loci were selected, 
the effect on the neutral locus would be still greater. Therefore, any estimates of 
fitness values based ~ i i  one-locus theory, such as the maximum likelihood esti- 
mates for four esterase loci by ALLARD, KALHAR and WEIR (1972), are not 
estimating the fitness values at  a single locus, but the effect of all selected loci in 
the genome. Thus, what is needed is neither a one-locus, nor even an n-locus 
model of selection in a partially selfing population, but a model that considers 
the whole genome. 

The results also suggest that since there is a greater frequency of heterozygotes 
at a neutral locus than thit expected from one-locus theory, the criteria for poly- 
morphism to be maintained at two or  more selected loci are less stringent than 
the conditions obtained from one-locus theory (ESHEL 1978). 
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