Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 May 9;81(Pt 6):482–485. doi: 10.1107/S2056989025004049

Synthesis, crystal structure and Hirshfeld surface analysis of a coordination compound of cadmium nitrate with 2-amino­benzoxazole

Surayyo Razzoqova a, Yodgor Ruzimov b, Akobir Toshov a, Batirbay Torambetov a,c,*, Aziz Ibragimov d, Jamshid Ashurov e, Shakhnoza Kadirova a
Editor: M Weilf
PMCID: PMC12142408  PMID: 40487694

The CdII atom in the title complex [Cd(NO3)2(2AB)4] (2AB is 2-amino­benzaxole; C7H6N2O) has a distorted octa­hedral coordination environment. In the crystal structure, several N—H⋯O inter­actions lead to the formation of layers parallel to (001).

Keywords: crystal structure, mol­ecular structure, cadmium complex, 2-amino­benzoxazole, octa­hedral coordination

Abstract

A coordination complex of cadmium nitrate [Cd(NO3)2] with 2-amino­benzaxole (2AB; C7H6N2O), namely, tetra­kis­(2-amino­benzoxazole-κN1)bis­(nitrato-κO)cadmium(II), [Cd(NO3)2(2AB)4], has been synthesized from ethanol solutions of Cd(NO3)2·H2O and 2AB. The asymmetric unit comprises half a mol­ecule of [Cd(NO3)2(2AB)4], with the CdII atom positioned on a twofold rotation axis. In the completed mol­ecular complex, four 2AB ligands and two nitrate anions each coordinate monodentately to the CdII atom, leading to a distorted octa­hedral coordination environment. The crystal structure of [Cd(NO3)2(2AB)4] exhibits several N—H⋯O inter­actions, resulting in the formation of a layered assembly parallel to (001). Hishfeld surface analysis was used to qu­antify the inter­molecular inter­actions.

1. Chemical context

Benzoxazole is a heterocyclic aromatic compound consisting of a benzene ring fused to an oxazole ring. It has a strong and unpleasant fishy odour, just like pyridine (Katritzky & Pozharskii, 2000; Clayden et al., 2001). Many benzoxazole-based compounds are valued in medicinal and biological research because of their numerous biological activities (Potashman et al., 2007; Šlachtová. & Brulíková, 2018; Razzoqova et al., 2022, 2024), including anti­microbial (Erol et al., 2022), anti­tumor (Imaizumi et al., 2020), anti-inflammatory (Parlapalli & Manda, 2017), analgesic (Ali et al., 2022; Sattar et al., 2020), anti­tubercular (Šlachtová & Brulíková, 2018), herbicidal (Sangi et al., 2019), and fungicidal properties (Fan et al., 2022).1.At the same time, 2-amino­benzoxazole (2AB) and its derivatives have potent anti­bacterial and anti­cancer properties (Paramashivappa et al., 2003; Khajondetchairit et al., 2017; Ouyang et al., 2012). One notable derivative of 2AB is 2-amino-5-chloro­benzoxazole, which has demonstrated muscle relaxant effects and is used as an anti­spasmodic and uricosuric agent in therapeutic applications (Lynch, 2004).

In the context given above, we present here the synthesis, crystal structure determination and Hirshfeld surface analysis of a coordination complex of 2AB with cadmium nitrate, [Cd(NO3)2(2AB)4].

2. Structural commentary

In the asymmetric unit of [Cd(NO3)2(2AB)4], which consists of half of a complex molecule, the CdII atom is positioned on a twofold rotation axis (multiplicity 4, Wyckoff letter e). In the completed mol­ecule, the CdII atom coordinates by four 2AB ligands and two nitrate anions, resulting in a distorted octa­hedral N4O2 coordination set (Fig. 1). The four 2AB ligands occupy the equatorial positions and are coordinated monodentately through their aromatic nitro­gen donor atoms with Cd—N bond lengths of 2.314 (3) and 2.325 (3) Å. The two axially positioned nitrato ligands are also coordinated in a monodentate fashion with a relatively long Cd—O bond length of 2.418 (3) Å. The dihedral angle formed between the two opposite 2-amino­benzaxazole ligands (labelled in Fig. 1) is 84.85 (17)°. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O hydrogen-bonding inter­actions involving the coordinated oxygen atom O1 and the non-coordinated oxygen atom O2 (entries #1 and #3 in Table 1).

Figure 1.

Figure 1

The mol­ecular structure of [Cd(NO3)2(2AB)4] with displacement ellipsoids drawn at the 30% probability level; non-labelled atoms are generated by symmetry code −x + 1, y, −z + Inline graphic. Intra­molecular hydrogen bonds are indicated by dashed blue lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O1i 0.86 2.26 2.971 (5) 140
N4—H4B⋯O2ii 0.86 2.28 2.822 (6) 121
N2—H2A⋯O2i 0.86 2.11 2.899 (7) 152
N2—H2B⋯O3iii 0.86 2.33 2.953 (6) 129

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

3. Supra­molecular features

In the crystal structure of [Cd(NO3)2(2AB)4], inter­molecular N—H⋯O hydrogen bonds involving the non-coordinated O atoms O2 and O3 (entries #2 and #4 in Table 1) lead to the formation of sheets extending parallel to (001), as shown in Fig. 2.

Figure 2.

Figure 2

Visualization of the mol­ecular packing in [Cd(NO3)2(2AB)4] in a view along [010]. Inter­molecular N—H⋯O inter­actions are shows as light-blue dashed lines.

4. Hirshfeld Surface Analysis

Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was performed and two-dimensional fingerprint plots (Spackman & McKinnon, 2002) were generated using Crystal­Explorer (Spackman et al., 2021) to qu­antify the inter­molecular inter­actions. HS and fingerprint plot analysis conducted for [Cd(NO3)2(2AB)4] are graphically displayed in Fig. 3. The red spots on the HS area of [Cd(NO3)2(2AB)4] confirm the close inter­molecular N—H⋯O contacts (related to entries #2 and #4 in Table 1) between adjacent mol­ecules. The two-dimensional fingerprint plots and their relative contributions revealed that H⋯H, O⋯H, C⋯H, C⋯O, O⋯O and N⋯H inter­actions are the main inter­actions to the HS area. Specifically, the fingerprint plots reveal the presence of close N—H⋯O contacts in form of two spikes observed near (di + de) ≃ 2.3 Å and C—H contacts as two wings near (di + de) ≃ 2. 8 Å (Fig. 3).

Figure 3.

Figure 3

View of HS and two-dimensional fingerprint plots of [Cd(NO3)2(2AB)4].

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.46, November 2024; Groom et al., 2016) revealed 17 crystal structures of 2-amino­benzoxazole derivatives. Among these, only two structures involve coordination compounds with zinc (QALXIL; Decken & Gossage, 2005) and cadmium (DIWPIM; Razzoqova et al., 2023). In the zinc complex, the central metal atom coordinates two benzoxazolamine ligands through the aromatic nitro­gen atom and two chloro ligands in a distorted tetra­hedral coordination environment. In the crystal structure of DIWPIM, which corresponds to [Cd(2AB)2(CH3COO)2], the CdII atom coordinates by two 2AB ligands and two acetato ligands in a monodentate and bidentate fashion, respectively, forming a distorted octa­hedral N2O4 coordination set.

6. Synthesis and crystallization

Cd(NO3)2·H2O (0.308 g, 1 mmol) and 2AB (0.268 g, 2 mmol) were dissolved separately in ethanol (5 ml), mixed together and stirred for 2 h. The obtained colourless solution was filtered and left for crystallization. Single crystals of the complex [Cd(NO3)2(2AB)4] suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 7 d.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were treated in a riding model with Uiso(H) = 1.2Ueq(C,N).

Table 2. Experimental details.

Crystal data
Chemical formula [Cd(NO3)2(C7H6N2O)4]
M r 772.97
Crystal system, space group Monoclinic, C2/c
Temperature (K) 293
a, b, c (Å) 15.9012 (3), 11.0897 (2), 18.9475 (5)
β (°) 109.182 (3)
V3) 3155.70 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.19
Crystal size (mm) 0.10 × 0.08 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020)
Tmin, Tmax 0.016, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12616, 3014, 2324
R int 0.084
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.128, 1.01
No. of reflections 3014
No. of parameters 223
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.95

Computer programs: CrysAlis PRO (Rigaku OD, 2020), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004049/wm5756sup1.cif

e-81-00482-sup1.cif (396.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004049/wm5756Isup2.hkl

e-81-00482-Isup2.hkl (241.3KB, hkl)

CCDC reference: 2448896

Additional supporting information: crystallographic information; 3D view; checkCIF report

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

BT would like to acknowledge the CSIR–TWAS fellowship and the FAIRE programme provided by the Cambridge Crystallographic Data Centre (CCDC) for the use of the Cambridge Structural Database (CSD) and associated software.

supplementary crystallographic information

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Crystal data

[Cd(NO3)2(C7H6N2O)4] F(000) = 1560
Mr = 772.97 Dx = 1.627 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54184 Å
a = 15.9012 (3) Å Cell parameters from 4500 reflections
b = 11.0897 (2) Å θ = 4.9–70.8°
c = 18.9475 (5) Å µ = 6.19 mm1
β = 109.182 (3)° T = 293 K
V = 3155.70 (13) Å3 Block, colourless
Z = 4 0.10 × 0.08 × 0.06 mm

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Data collection

XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer 3014 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source 2324 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.084
Detector resolution: 10.0000 pixels mm-1 θmax = 71.1°, θmin = 4.9°
ω scans h = −19→19
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) k = −13→13
Tmin = 0.016, Tmax = 1.000 l = −22→23
12616 measured reflections

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0631P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128 (Δ/σ)max < 0.001
S = 1.01 Δρmax = 0.56 e Å3
3014 reflections Δρmin = −0.95 e Å3
223 parameters Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00041 (6)

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.500000 0.24505 (3) 0.750000 0.04211 (19)
O5 0.5198 (2) −0.0974 (3) 0.6354 (2) 0.0633 (9)
O4 0.5320 (2) 0.5949 (3) 0.8680 (2) 0.0650 (9)
O1 0.3406 (2) 0.2156 (3) 0.7009 (2) 0.0639 (9)
N1 0.5181 (2) 0.3989 (3) 0.8371 (2) 0.0461 (8)
N3 0.5049 (2) 0.0945 (3) 0.6668 (2) 0.0470 (8)
N5 0.2779 (2) 0.2434 (4) 0.7254 (3) 0.0572 (11)
N4 0.6112 (2) −0.0366 (4) 0.7492 (2) 0.0625 (11)
H4A 0.629684 0.016170 0.784177 0.075*
H4B 0.634011 −0.107721 0.755194 0.075*
O2 0.2525 (3) 0.3475 (4) 0.7173 (3) 0.1036 (16)
N2 0.6252 (3) 0.5215 (4) 0.8094 (3) 0.0752 (13)
H2A 0.645052 0.464034 0.788780 0.090*
H2B 0.647782 0.592541 0.812309 0.090*
O3 0.2472 (3) 0.1686 (5) 0.7563 (3) 0.1067 (16)
C5 0.3927 (3) 0.3589 (5) 0.8882 (3) 0.0590 (12)
H5 0.386358 0.277102 0.876857 0.071*
C6 0.4556 (3) 0.4272 (4) 0.8722 (2) 0.0483 (10)
C13 0.4434 (3) 0.0736 (4) 0.5961 (3) 0.0487 (10)
C7 0.5601 (3) 0.5007 (4) 0.8366 (3) 0.0527 (11)
C12 0.3822 (3) 0.1470 (5) 0.5465 (3) 0.0560 (11)
H12 0.374376 0.226672 0.558271 0.067*
C1 0.4640 (3) 0.5490 (4) 0.8903 (3) 0.0591 (12)
C2 0.4121 (4) 0.6093 (5) 0.9230 (3) 0.0768 (16)
H2 0.418750 0.691342 0.933603 0.092*
C11 0.3324 (3) 0.0975 (6) 0.4779 (3) 0.0754 (16)
H11 0.291093 0.145209 0.442908 0.091*
C14 0.5477 (3) −0.0084 (4) 0.6863 (3) 0.0501 (11)
C8 0.4530 (3) −0.0457 (4) 0.5772 (3) 0.0595 (12)
C4 0.3384 (4) 0.4174 (6) 0.9221 (3) 0.0793 (17)
H4 0.294517 0.373897 0.933595 0.095*
C3 0.3487 (4) 0.5396 (7) 0.9391 (4) 0.087 (2)
H3 0.311723 0.575692 0.962182 0.105*
C10 0.3436 (4) −0.0227 (7) 0.4611 (4) 0.086 (2)
H10 0.308806 −0.053870 0.415260 0.103*
C9 0.4051 (4) −0.0967 (6) 0.5107 (3) 0.0831 (18)
H9 0.413245 −0.176568 0.499456 0.100*

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.0425 (2) 0.0410 (3) 0.0463 (3) 0.000 0.01946 (17) 0.000
O5 0.068 (2) 0.0510 (17) 0.074 (2) 0.0032 (16) 0.0276 (18) −0.0150 (17)
O4 0.073 (2) 0.0507 (18) 0.074 (2) −0.0063 (16) 0.0271 (18) −0.0097 (17)
O1 0.0380 (16) 0.081 (2) 0.075 (2) 0.0023 (15) 0.0215 (16) −0.0023 (18)
N1 0.0500 (19) 0.0458 (18) 0.046 (2) −0.0011 (16) 0.0208 (16) −0.0034 (16)
N3 0.0495 (18) 0.0491 (19) 0.047 (2) 0.0014 (16) 0.0214 (16) −0.0052 (16)
N5 0.0346 (17) 0.077 (3) 0.060 (2) 0.0003 (18) 0.0162 (17) 0.000 (2)
N4 0.059 (2) 0.053 (2) 0.075 (3) 0.0158 (18) 0.022 (2) 0.002 (2)
O2 0.100 (3) 0.096 (3) 0.126 (4) 0.050 (3) 0.053 (3) 0.018 (3)
N2 0.068 (3) 0.073 (3) 0.094 (4) −0.025 (2) 0.039 (3) −0.017 (3)
O3 0.107 (3) 0.113 (4) 0.126 (4) −0.044 (3) 0.074 (3) −0.008 (3)
C5 0.063 (3) 0.066 (3) 0.053 (3) 0.001 (2) 0.026 (2) 0.002 (2)
C6 0.049 (2) 0.056 (2) 0.041 (2) 0.006 (2) 0.0149 (18) −0.0022 (19)
C13 0.046 (2) 0.054 (2) 0.049 (3) −0.0074 (19) 0.0186 (19) −0.003 (2)
C7 0.053 (2) 0.052 (2) 0.051 (3) −0.007 (2) 0.014 (2) −0.007 (2)
C12 0.058 (3) 0.067 (3) 0.049 (3) −0.005 (2) 0.025 (2) −0.001 (2)
C1 0.062 (3) 0.055 (3) 0.058 (3) 0.008 (2) 0.018 (2) −0.001 (2)
C2 0.084 (4) 0.073 (4) 0.077 (4) 0.017 (3) 0.032 (3) −0.009 (3)
C11 0.061 (3) 0.106 (5) 0.060 (3) −0.008 (3) 0.019 (3) 0.003 (3)
C14 0.046 (2) 0.048 (2) 0.062 (3) 0.0033 (18) 0.025 (2) −0.004 (2)
C8 0.062 (3) 0.058 (3) 0.067 (3) −0.007 (2) 0.031 (2) −0.015 (2)
C4 0.075 (3) 0.100 (5) 0.071 (4) −0.005 (3) 0.035 (3) 0.000 (3)
C3 0.083 (4) 0.103 (5) 0.084 (4) 0.027 (4) 0.038 (3) −0.017 (4)
C10 0.073 (4) 0.114 (5) 0.067 (4) −0.019 (4) 0.019 (3) −0.033 (4)
C9 0.079 (4) 0.084 (4) 0.086 (5) −0.016 (3) 0.027 (3) −0.035 (3)

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Geometric parameters (Å, º)

Cd1—O1i 2.418 (3) N2—C7 1.319 (6)
Cd1—O1 2.418 (3) C5—H5 0.9300
Cd1—N1i 2.325 (3) C5—C6 1.365 (6)
Cd1—N1 2.325 (3) C5—C4 1.396 (7)
Cd1—N3 2.314 (3) C6—C1 1.390 (6)
Cd1—N3i 2.314 (3) C13—C12 1.375 (6)
O5—C14 1.350 (5) C13—C8 1.392 (6)
O5—C8 1.380 (6) C12—H12 0.9300
O4—C7 1.349 (5) C12—C11 1.392 (7)
O4—C1 1.381 (6) C1—C2 1.358 (7)
O1—N5 1.269 (5) C2—H2 0.9300
N1—C6 1.401 (6) C2—C3 1.383 (8)
N1—C7 1.314 (5) C11—H11 0.9300
N3—C13 1.395 (6) C11—C10 1.396 (9)
N3—C14 1.318 (5) C8—C9 1.363 (7)
N5—O2 1.217 (5) C4—H4 0.9300
N5—O3 1.206 (6) C4—C3 1.391 (8)
N4—H4A 0.8600 C3—H3 0.9300
N4—H4B 0.8600 C10—H10 0.9300
N4—C14 1.322 (6) C10—C9 1.381 (9)
N2—H2A 0.8600 C9—H9 0.9300
N2—H2B 0.8600
O1—Cd1—O1i 164.46 (17) C1—C6—N1 108.1 (4)
N1—Cd1—O1i 87.51 (12) C12—C13—N3 132.4 (4)
N1—Cd1—O1 104.00 (12) C12—C13—C8 119.9 (4)
N1i—Cd1—O1i 104.00 (12) C8—C13—N3 107.7 (4)
N1i—Cd1—O1 87.51 (12) N1—C7—O4 114.8 (4)
N1i—Cd1—N1 85.58 (18) N1—C7—N2 128.3 (4)
N3—Cd1—O1 84.62 (12) N2—C7—O4 116.9 (4)
N3—Cd1—O1i 84.18 (13) C13—C12—H12 121.2
N3i—Cd1—O1 84.18 (13) C13—C12—C11 117.6 (5)
N3i—Cd1—O1i 84.63 (12) C11—C12—H12 121.2
N3—Cd1—N1 171.33 (11) O4—C1—C6 107.7 (4)
N3i—Cd1—N1 94.01 (14) C2—C1—O4 127.7 (5)
N3i—Cd1—N1i 171.33 (11) C2—C1—C6 124.6 (5)
N3—Cd1—N1i 94.01 (14) C1—C2—H2 122.5
N3i—Cd1—N3 87.70 (18) C1—C2—C3 115.0 (6)
C14—O5—C8 104.7 (4) C3—C2—H2 122.5
C7—O4—C1 104.9 (4) C12—C11—H11 119.6
N5—O1—Cd1 132.6 (3) C12—C11—C10 120.8 (6)
C6—N1—Cd1 124.1 (3) C10—C11—H11 119.6
C7—N1—Cd1 124.8 (3) N3—C14—O5 114.5 (4)
C7—N1—C6 104.6 (4) N3—C14—N4 129.0 (4)
C13—N3—Cd1 127.1 (3) N4—C14—O5 116.5 (4)
C14—N3—Cd1 124.3 (3) O5—C8—C13 108.1 (4)
C14—N3—C13 105.1 (4) C9—C8—O5 128.0 (5)
O2—N5—O1 116.9 (5) C9—C8—C13 123.9 (5)
O3—N5—O1 120.2 (5) C5—C4—H4 119.5
O3—N5—O2 122.9 (5) C3—C4—C5 121.0 (6)
H4A—N4—H4B 120.0 C3—C4—H4 119.5
C14—N4—H4A 120.0 C2—C3—C4 122.2 (6)
C14—N4—H4B 120.0 C2—C3—H3 118.9
H2A—N2—H2B 120.0 C4—C3—H3 118.9
C7—N2—H2A 120.0 C11—C10—H10 119.1
C7—N2—H2B 120.0 C9—C10—C11 121.8 (5)
C6—C5—H5 121.5 C9—C10—H10 119.1
C6—C5—C4 117.0 (5) C8—C9—C10 116.0 (6)
C4—C5—H5 121.5 C8—C9—H9 122.0
C5—C6—N1 131.8 (4) C10—C9—H9 122.0
C5—C6—C1 120.2 (5)
Cd1—O1—N5—O2 79.2 (6) C13—N3—C14—O5 −0.8 (5)
Cd1—O1—N5—O3 −99.7 (5) C13—N3—C14—N4 −178.2 (5)
Cd1—N1—C6—C5 26.7 (6) C13—C12—C11—C10 0.9 (8)
Cd1—N1—C6—C1 −151.9 (3) C13—C8—C9—C10 −0.6 (9)
Cd1—N1—C7—O4 152.3 (3) C7—O4—C1—C6 1.0 (5)
Cd1—N1—C7—N2 −27.5 (7) C7—O4—C1—C2 −177.8 (5)
Cd1—N3—C13—C12 22.8 (7) C7—N1—C6—C5 179.3 (5)
Cd1—N3—C13—C8 −158.9 (3) C7—N1—C6—C1 0.7 (5)
Cd1—N3—C14—O5 159.4 (3) C12—C13—C8—O5 178.4 (4)
Cd1—N3—C14—N4 −18.0 (7) C12—C13—C8—C9 0.5 (8)
O5—C8—C9—C10 −178.0 (5) C12—C11—C10—C9 −1.1 (9)
O4—C1—C2—C3 179.8 (5) C1—O4—C7—N1 −0.6 (5)
N1—C6—C1—O4 −1.1 (5) C1—O4—C7—N2 179.2 (4)
N1—C6—C1—C2 177.8 (5) C1—C2—C3—C4 −0.9 (9)
N3—C13—C12—C11 177.5 (5) C11—C10—C9—C8 0.8 (9)
N3—C13—C8—O5 −0.2 (5) C14—O5—C8—C13 −0.2 (5)
N3—C13—C8—C9 −178.1 (5) C14—O5—C8—C9 177.5 (5)
C5—C6—C1—O4 −179.9 (4) C14—N3—C13—C12 −177.7 (5)
C5—C6—C1—C2 −1.0 (8) C14—N3—C13—C8 0.6 (5)
C5—C4—C3—C2 0.5 (10) C8—O5—C14—N3 0.6 (5)
C6—N1—C7—O4 −0.1 (5) C8—O5—C14—N4 178.4 (4)
C6—N1—C7—N2 −179.8 (5) C8—C13—C12—C11 −0.7 (7)
C6—C5—C4—C3 −0.3 (8) C4—C5—C6—N1 −177.9 (5)
C6—C1—C2—C3 1.1 (8) C4—C5—C6—C1 0.5 (7)

Symmetry code: (i) −x+1, y, −z+3/2.

Tetrakis(2-aminobenzoxazole-κN1)bis(nitrato-κO)cadmium(II) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O1i 0.86 2.26 2.971 (5) 140
N4—H4B···O2ii 0.86 2.28 2.822 (6) 121
N2—H2A···O2i 0.86 2.11 2.899 (7) 152
N2—H2B···O3iii 0.86 2.33 2.953 (6) 129

Symmetry codes: (i) −x+1, y, −z+3/2; (ii) x+1/2, y−1/2, z; (iii) x+1/2, y+1/2, z.

References

  1. Ali, S., Omprakash, P., Tengli, A. K., Mathew, B., Basavaraj, M. V., Parkali, P., Chandan, R. S. & Kumar, A. S. (2022). Polycyclic Aromat. Compd.30, 3853–3886.
  2. Clayden, J., Greeves, N., Warren, S. & Wothers, P. (2001). In Organic Chemistry. Oxford University Press.
  3. Decken, A. & Gossage, R. A. (2005). J. Inorg. Biochem.99, 664–667. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  5. Erol, M., Celik, I., Uzunhisarcikli, E. & Kuyucuklu, G. (2022). Polycyclic Aromat. Compd.42, 1679–1696.
  6. Fan, L., Luo, Z., Yang, C., Guo, B., Miao, J., Chen, Y., Tang, L. & Li, Y. (2022). Mol. Divers.26, 981–992. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Imaizumi, T., Otsubo, S., Komai, M., Takada, H., Maemoto, M., Kobayashi, A. & Otsubo, N. (2020). Bioorg. Med. Chem.28, 115622. [DOI] [PubMed]
  9. Katritzky, A. R. & Pozharskii, A. F. (2000). In Handbook of Heterocyclic Chemistry, 2nd ed. New York: Academic Press.
  10. Khajondetchairit, P., Phuangsawai, O., Suphakun, P., Rattanabunyong, S., Choowongkomon, K. & Gleeson, M. P. (2017). Chem. Biol. Drug Des.90, 987–994. [DOI] [PubMed]
  11. Lynch, D. E. (2004). Acta Cryst. E60, o1715–o1716.
  12. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  13. Ouyang, L., Huang, Y., Zhao, Y., He, G., Xie, Y., Liu, J., He, J., Liu, B. & Wei, Y. (2012). Bioorg. Med. Chem. Lett.22, 3044–3049. [DOI] [PubMed]
  14. Paramashivappa, R., Phani Kumar, P., Subba Rao, P. V. & Srinivasa Rao, A. (2003). Bioorg. Med. Chem. Lett.13, 657–660. [DOI] [PubMed]
  15. Parlapalli, A. & Manda, S. (2017). J. Chem. Pharm. Res.9, 57–62.
  16. Potashman, M. H., Bready, J., Coxon, A., DeMelfi, T. M., DiPietro, L., Doerr, N., Elbaum, D., Estrada, J., Gallant, P., Germain, J., Gu, Y., Harmange, J. C., Kaufman, S. A., Kendall, R., Kim, J. L., Kumar, G. N., Long, A. M., Neervannan, S., Patel, V. F., Polverino, A., Rose, P., van der Plas, S., Whittington, D., Zanon, R. & Zhao, H. (2007). J. Med. Chem.50, 4351–4373. [DOI] [PubMed]
  17. Razzoqova, S., Ibragimov, A., Torambetov, B., Kadirova, S., Holczbauer, T., Ashurov, J. & Ibragimov, B. (2023). Acta Cryst. E79, 862–866. [DOI] [PMC free article] [PubMed]
  18. Razzoqova, S., Torambetov, B., Amanova, M., Kadirova, S., Ibragimov, A. & Ashurov, J. (2022). Acta Cryst. E78, 1277–1283.
  19. Razzoqova, S., Torambetov, B., Todjiev, J., Kadirova, S., Ibragimov, A., Ruzmetov, A. & Ashurov, J. (2024). IUCrData9, x240033. [DOI] [PMC free article] [PubMed]
  20. Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.
  21. Sangi, D. P., Meira, Y. G., Moreira, N. M., Lopes, T. A., Leite, M. P., Pereira–Flores, M. E. & Alvarenga, E. S. (2019). Pest Manage. Sci.75, 262–269. [DOI] [PubMed]
  22. Sattar, R., Mukhtar, R., Atif, M., Hasnain, M. & Irfan, A. (2020). J. Heterocycl. Chem.57, 2079–2107.
  23. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  24. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  25. Šlachtová, V. & Brulíková, L. (2018). ChemistrySelect3, 4653–4662.
  26. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm11, 19–32.
  27. Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm4, 378–392.
  28. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  29. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025004049/wm5756sup1.cif

e-81-00482-sup1.cif (396.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989025004049/wm5756Isup2.hkl

e-81-00482-Isup2.hkl (241.3KB, hkl)

CCDC reference: 2448896

Additional supporting information: crystallographic information; 3D view; checkCIF report

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES