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ABSTRACT 

Using conditional probabilities and moment-generating matrices, I derived 
approximate algebraic equations that give expectations of gene frequency, 
population mean, gene frequency variance within lines, or heterozygosity, and 
gene frequency variance between liaes, or drift, for repeated cycles of recur- 
rent selection in populations of finite size. For genes of large effect, the 
responses to selection differ substantially from the classical expectations, and 
equations are derived that give quantitative estimates of asymmetry of 
response when selection is done in opposite directions. Particular cases of the 
derived formulae yield equations given by other authors. The error involved 
in the approximations is discussed in the APPENDIX. 

HE moment-generating matrix method has proven to be quite useful for 
Tstudying genetic changes in populations of finite size. The method was devel- 
oped by ROBERTSON (1952) to study the change of the additive genetic variance 
of a recessive gene in a random-mating population with no selection. In a later 
paper, ROBERTSON (1960) applied the method to follow changes in gene fre- 
quency for a gene of small effect in a population under selection. He dealt with 
additive and recessive genes. The theory was developed assuming that the 
selective advantage of the gene was known. The results were then applied to 
artificial selection by using a formula, originally derived by HALDANE (1931), 
relating the metric scale, where artificial selection is applied, to the selective 
advantage that is conferred to the gene by this selection. 

In this paper, the matrix method is extended to slightly more complex situa- 
tions. It always deals with one-locus models in populations of finite size under 
selection. We consider any degree of dominance including overdominance, genes 
of small effect and, whenever possible, also genes of large effect. The theory is 
developed on the metric scale so that it directly concerns artificial selection. 

We follow changes in the mean including asymmetry of response when it 
occurs, changes in gene frequency variance within lines, or heterozygosity, and 
changes in gene frequency variance between lines, or drift. The results obtained 
provide a better understanding of the changes of genetic statistics in populations 
simultaneously subjected to drift and selection. 
Genetics: 95 : 769-782 July, 1980. 
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THE MODEL 

Consider a one-locus diploid model with two alleles in a random-mating popula- 
tion of an ideal species that is monoecious with the possibility of self-fertilization. 

In each generation, a random-mating population of N parents produces M 
progeny. Each single progeny is produced by taking two parents at random with 
replacement to allow for the possibility of self-fertilization. The best N pheno- 
types in the progeny are selected to form the parental population in the next 
generation. Random mating to obtain M progeny is statistically equivalent to 
taking a random sample of size M from the conceptually infinite population of 
all possible progeny, which will of course be in Hardy-Weinberg proportions. 

Let this infinite population be that shown in Table 1, where q is the gene 
frequency among the parents, u is the gene effect and a the degree of dominance. 
We use g k  for the deviation of a genotypic value from the mean. The population 
mean is p = 2qu + 29 ( 1-q) au, the additive genetic variance U: = 29 ( 1-4) [ 1 + 
(1 -2q) a]  2u2 and the total genotypic variance fkgk2, as given by COMSTOCK 
and ROBINSON (1948). 

The phenotype of an individual is considered to be the sum of the cverall 
population mean, the genotypic deviation in the locus considered, gk,  and a rccid- 
ual or environmental deviation, r. The residual deviation is assumed to be a stand- 
ard normal variate and the genotypic and the residual deviations are considered 
independent, Cov(gk,r) = 0. We use p for the phenotypic deviation, or the 
difference of a phenotype from the population mean, so that p = gic + r. 

= 

The three distributions involved in the selection process are thus 

PROBABILITY O F  SELECTING A GIVEN GENOTYPE 

Let us consider a fixed phenotypic value p .  The genotypic content of p could 
be any of the three possibilities. In statistical terms, it is a random variable, 
the probability of which is distributed as follows: Let S(gk lp )  be the conditional 
probability of gk given p ,  Prob(gk X p) the joint probability of gk and p ,  and for 

TABLE 1 

Genotypic frequencies, values and deviations 

Genotype Frequency 
Genotypic Genotypic 

values deviations 

LL f1=q2  2u g, = 2u-JL 

1L f 3  = (1--cr)2 0 g, = -c 

LL f ,  = 2 d l - q )  u+au g, = u+au--y 
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the sake of simplicity let Prob( ) be either probability or density depending on 
the distributions involved. 

r f.. . 
(gi-ui) +. .. ] . 

+ .  . . 
Y 

If the phenotype selected is not fixed, but rather a random variable with 
( p ) ,  the unconditional probability of a given genotype being distribution 

selected S (gk) is 

where the expectations E ( p )  and E ( p 2 )  are taken over the distribution ~ ( p ) .  

O b )  = * P ( P )  and 
For example, if a phenotype is taken at random from the original population, 

as it should. 
If the phenotype selected is the best one of a random sample of size M ,  then 

O ( p )  is the distribution of the first-order statistic of a random sample of size M 
taken from q P ( p ) ,  and E ( p )  and E ( p 2 )  are the first two moments of the dis- 
tribution @ (p) . 

If the upper fraction of the sample or the top N phenotypes are selected, as 
will be the case in this paper, then E ( p )  and E ( p 2 )  become the averages of the 
moments of the distributions of the top N-order statistics. 

If U is small, then qP(p) is approximately normal, and E ( p )  and E ( p 2 )  can 
be approximated by the averages of normal-order statistics. KOJIMA (1961 ) calls 
E ( p )  the generalized selection differential, but usually it is referred to as just 
the intensity of selection. In the following, we shall use i for E ( p )  and i, for 
E ( p 2 )  without necessarily implying that q P ( p )  is normal. 

The reasoning above implies that the frequencies of the three possible geno- 
types in the selected fraction have a multinominal distribution with probabilities 
S ( g l ) ,  S ( g 2 )  and S ( g 3 )  (KOJIMA 1961; GALLEY and CURNOW 1972). Extension 
of the theory to multiple or even infinite genotypes is straightforward. 
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GENES O F  SMALL EFFECT 

Changes in gene frequency: If we assume that the gene effect U is small enough 
that terms in u2 and higher powers can be ignored, we get from (1) the well- 
known formula 

S(gd =fk(l  + i g d  , (2) 
which shows the linear relationship between the metric scale and the fitness or 
selective scale (HALDANE 1931 ; ROBERTSON 1963). 

KIMURA and CROW (1978) have shown that, for infinite population size and 
truncation selection, if i is the ratio of the ordinate at the truncation point to the 
proportion selected, this last formula is valid even if the phenotypic distribution 
is far from normal, as long as it is differentiable. 

The probability that an individual with a genetic value ( p  3- gk) is selected 
is given by S(gk),  and then the expected genotypic mean and variance of the 
top N individuals selected are 

px = 3 ( p  + g d S ( g d  = p  + io; , 
always larger than the population mean p, and 

which may be larger or smaller than the population genotypic variance U;, 
depending on the size and sign of the population third-order genotypic central 

.moment p3. For random selection i = 0 and pN = p ,  U:= -- ui as they should. 

Expectations in the progeny of the N selected individuals can be obtained from 
multinomial distribution theory. Unless otherwise specified the expectations 
in this paper refer to the conceptually infinite progeny populations. 

Ignoring terms of order u2 and letting E [ ]I be the expectation in the progeny, 
the following'set of equations, given in matrix form, can be derived. 

N - I  
N 

This is a recurrence relation, and the transition matrix is called a moment 
generating matrix. The vector of expectations at generation t will be obtained 
by multiplying the initial vector t times by the transition matrix. This method 
was obtained by ROBERTSON (1952,1960), and many conclusions of this section 
have already been reported by him. 

For the first few generations, the approximation requirements are just those 
in (2), i.e., the gene effect U (or, to be more specific, iu and aiu) should be small 
enough that their squares can be ignored. As the number of generations increases, 
the approximation deteriorates; and, for the formulae to be valid: Niu  and Naiu 
should be small and their squares negligible (ROBERTSON 1960; KIMURA 1962). 
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A check on how good these approximations are as the number of generations 
increases is given in the APPENDIX. 

1 2 
2N 2N Letting A = (1 - -) and B = ( 1  - -), the expected gene frequency at 

generation t results 

1 -At  1 - AtBt 
q(1-q) ( l -2q)a iu .  (3) 1 - A B  ECql t = 4 + l--A q(1-q)iu + 

Formula ( 3 )  was given by ROBERTSON (1960) for the special cases of recessive 
and additive gene action ( a  =, - I ,  a = 0 ) ,  his notation corresponding to the 
selective or fitness scale where s = 2iu. 

00 and entering the values of A and B in ( 3 )  , we get the selection 
limit 

Making t 

N 
3 N - 1  ECqlm=q+2Niuq( l ' -q)  [ 1 +-- (1-2q)aI . 

For additive (a = 0) and recessive (a  = -1) gene action, (4) yields the formulae 
reported by ROBERTSON (1960). For overdominant loci ( a  > 1) and initial equi- 

, (4) becomes the expansion of KIMURA'S (1957) 1 + a  librium frequency 9. = - 
2 U  

equation given by ROBERTSON ( 1  962). 
In equation ( 3 ) ,  a appears in the product ( 1  - 2q)a, so that for q = 0.5, a 

common situation in breeding species with the possibility of self-fertilization, 
the whole selection process as defined by E [ q ]  is the same for additive, dominant 
and overdominant loci. 

The rate of advance is 

[a] t = E [q] t +I - E [ 91 t = 4 ( 1-q) iu [At  + At + AtBt ( 1-2q) a] . 
For any gene frequency, as selection proceeds t increases and AtBt will become 
much smaller than At.  That is, a point will be reached at which the effects of 
the degree of dominance a upon selection will be exhausted. Thereafter, changes 

1 t  will occur at a relative rate of At = (1 - -) . Therefore, the effects of the 2N 
degree of dominance will be readily exhausted if N is small. As a matter of fact, 
if N = 1, as can be the case for an autogamous species, AB = 0 and the rate of 
advance becomes independent of a after the very first generation. 

Rates of advance, ratios of initial to final responses and the half-life of the 
selection process have been extensively treated by ROBERTSON (1960). 

Changes in second-order moments: Let 0, 02, 0, be the observed frequencies 
of the three genotypes in the selected fraction. One can easily derive 

1 1 1 
~ [ g ( i - q ) l i  ~ [ ( 0 1 + 2 0 z )  (l-oi-~oz)] = ( 1  - 5) ( l + i m ) q ( l - q )  + 

1 1 8 N - 6  ( I - m ) q ( l - q )  (1--2q)iu- (I--) 2N 2 N - I  q2 ( l.--q) 2iua 
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Proceeding as before, we get 

r ~ q ( 1 - q ) ~ ~  1 [ 1 +iua ; -g?- - 

Erq(1-q) (1-2q)iu],  = A 0 q(1-q) (1-2q)iu 

E [ q2 ( 1  -4) 'iua] BC q' ( 1-9) %a 
A __ 2N iua 

- 
where C = 1 - - . After t generations of selection, we obtain ( ,",I 

4N-3 l-BfC' 
5N---3 1-BC ( 5 )  

~ [ q ( l - q > l ~  = q ( l - q ) ~ t  [ I  + iuat + --( -- - t )  iua + 

The expression E [ q  ( 1  -4) ] gives the within-line variance or heterozygosity 
at generation t .  For additive genes, 2u2 E [ q  ( 1-q) ] is the additive genetic vari- 
ance o r  the heritability since, within the approximation limits, the phenotypic 
variance equals one. 

For the early generations, if  N is relatively large, ( 1  - -) 1: 1 - - and, 1 f  t 
N N 

If there is no selection and only drift occurs. the initial heterozygosity decreases 

as q ( 1-4) (1 - &) : This reduction can be accelerated or retarded by selection 

depending on the sign of iut 4a ( q  - + ) ( q  - If-a) . For a > 0, the reduction 

and retarded if q will be accelerated if q is within the interval - < q < - 

i s  outside the interval. As a increases, -- approaches - and the acceleration 

interval tends to disappear. For -1 5 a 5 0, there will also be acceleration for 

4 > -. For q = - or q = -, selection will have no effect on the reduction 

of heterozygosity. 

2a 
1 
2 2a 

1 -!-a 1 
2a 2 

1 1 1 +a 
2 2 2a 

The retardation may be such as to reverse the direction of change, for 
E [ q ( l - q )  J f  will increase as long as iu 4a(q  - +)( q - %)(2 - --) 2 t f l  > 

4 N 
1 - i.e., for genes with small initial frequencies and with large values of u and i " 

and also for highly heterotic genes at high initial frequencies, provided N is 
large. 
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For N relatively large and during the early generations, 

With no selection, the variance due to drift alone always increases as V,, = 

q(1-q) -. This effect of drift may be attenuated or enhanced by selection. 

It will be attenuated if a > 0 and- < Q < -or if 1-1 I a I O  and q >- 
The variance at the beginning always increases, but if  E [ q l m  = 1, then 

Vqm = 0; therefore, V,, necessarily passes through a maximum and then 

decreases. If E[qIm = - the variance at the limit has a maximum value of 

t 
2N 

1 1 +U 1 
2 2a 2 '  

1 
2 '  

1 
4 

V,,=-. 

2u[q + 9(1,-q)al, 
Using equations ( 3 )  and ( 5 )  one can also follow changes in the mean p 

- t ) iun+ ( 6 )  
4N-3 l'-BtCt 
5N-3 1-BC (1-2q)iua + A$ q(l--q)a[l+iuat + -( 

For t =  1, ( 6 )  equals the formula given by KOJIMA (1961). 
Again, for early generations and N relativity large, the rate of response 

For infinite population size, R [ p ]  , = i2q ( 1-4) [ 1 + ( 1  -2q) a]  *u2 = iu;, as 
it should. 

The rate of response, and therefore the response itself, is the result of several 
and sometimes opposing forces as was shown algebraically for one generation by 
KOJIMA (1961) and through computer matrix iteration for repeated cycles of 
selection by HILL (1969b). The first term, [ 1 + (1-.2q)a] 'iu, is always positive 

and due only to selection. The second term, -- of opposite sign to that of a, 

is the inbreeding depression. It is independent of selection and is due to the finite- 
ness of the population. The third term can be positive or negative depending 
on the values of q and a. It is due to the joint action of selection and finite popu- 
lation size and, as selection proceeds, increases in absolute value with t, while 
the other two terms remain constant in size and sign. If this third term is positive, 

a 
2" 
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an initially negative rate of response might later become positive and the early 
loss could be recovered and exceeded. If a is positive, N not too large and either 
iu or [ 1 4- (1-2q)aI small, then the early response can be negative. 

The rate of advance changes as selection proceeds, the acceleration being 

For example, for recessive genes ( a  = -1) at low initial frequencies, selection 
response will be accelerated during the early generations, especially for small 
values of N and large values of iu. This change will be reflected in increases in 
the additive genetic variance and is due to the finiteness of the population (ROB- 
ERTSON 1952) as well as to selection. The acceleration will be maximum for 
q = 0.25. 

The advance in the first generation and the final advance can be obtained 
from (6) , and their ratio is given by 

For the final advance expression to be valid, Niu must be small. 
For additivity ( a  = 0), the ratio is (ROBERTSON 1960) 

- - ~ - -  - 2 N .  *pm - eNiuq(1-q) 
APT iuq(1-q) 

For nonadditive gene action and a larger in absolute value than Niu, we have 
again 

For recessive genes (a  =,-1),  this is an exception to the results obtained by 
ROBERTSON (1960). In practice, however, small Niu values imply very small 
population sizes, which could exceptionally be the case when fast (but not very 
fast) inbreeding is wanted ( N  = 2,3) or in autogamous species ( N  = 1). 

GENES O F  LARGER EFFECT 

Changes in o m  generation: For genes of larger effect, we have to keep, in 
expansion ( I  ), terms in u2 and ignore only terms in u3. The probability of a 
given genotype being selected becomes then 
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For infinite population size, LATTER (1965), using the same model, derived 
a fonrda  for the frequency of a genotype following selection to which S(gk)  is 
linked as follows: If a standard normal distribution is truncated at xa, then it can 
be shown that i, = xai -1- 1, and since the phenotypic distribution is approximately 
normal, then 

which is LATTER'S (1955) expression in ow notation. 

Proceeding as before, with the multinomial probabilities S ( g k ) ,  the derivations 
of expectations after one cycle of selection are straightforward. The results, 
except for the cases of nonadditive gene action or small population size, do not 
add much to LATTER'S. 

For recessive genes, the changes in gene frequency and in the mean after one 
generation of selection are 

12(i,-I)q (+- q)( q 2  -$)U2 - io;] . 

In 4, the second term will give rise to asymmetry of response when selection 
with the same intensity is done in the opposite direction (-i) and it is propor- 
tional to U:; as pointed out by ROBERTSON (1977) , the responses will be symmet- 

1 
rical when both genotypic values are equally frequent q2 = - 2 '  

For infinite population size, q = 0.20, U = 0.25, i = 1.76 and i, = 3.25, the 
response in the mean is Ap = 1.36 i<. The classical formula underestimates the 
true response by 36%, a surprisingly large error. 

For small population sizes, the response in the mean may be insignificant or 
even opposite to the direction of selection. For N = I O ,  q = 0.20, U = 0.20 and 
upward selection with i = 1.73 and i, = 3.18, the change in the mean isAp{+} = 
4.15 U:, whereas for downward selection with the same intensity i = -1.73, i2 = 
3.18, then Ap{-} = 0.09 U:. That is, when small population size and nonadditive 
gene action occur at the same time, the asymmetry of response, one of the most 
conspicuous features of the responses due to genes of large effect (LATTER 1965), 
may be greatly enhanced. 

Repeated cycles of selection: For additivity, transition matrices can be obtained 
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that are small enough to be handled. The second-order formula for the expected 
gene frequency at generation tis: 

where the terms in second-order moments (it, i') will give the asymmetry of 
response to selection in the opposite direction (-i) . 

DISCUSSION 

The standard theory of selection and that of inbreeding due to finite popula- 
tion size were developed separately. The joint action of selection and finite size 
has been treated by several authors in several different ways (KIMURA 1957; 
ROBERTSON 1960; KOJIMA 1961; HILL 1969a). 

Although many of the results were implicit in previous works, the simul- 
taneous mathematical treatment of both theories developed in this paper allows 
the setting up of explicit critical regions within or without which the rate of 
change and the acceleration of genetic moments are positive or negative. They 
permit us to know when selection enhances or opposes the effects of inbreeding 
or vice versa and to determine which share of the response can be accounted for 
by selection, which by inbreeding and which by the joint action of both, and 
how these components will change with time. 

Most times the critical regions are defined by parameter values such as q 

$- a ,  gene frequencies well known in standard selection theory, or 
1 - o r q = -  
2 2a 

1 expressions like (1  - -) which appear throughout the theory of inbreeding. 
2N 

Some of the main features of the theories of inbreeding due to finite size and 
of selection in infinite populations are as follows: 

With inbreeding, the mean gene frequency does not change; whereas, with 
selection, it always increases (ignoring overdominance). 

The gene frequency variance within lines always decreases with inbreeding, 
1 but, with selection, it increases if q < - and decreases otherwise. The between- 
2 

lines variance increases steadily with inbreeding and does not change with 
selection. 

With inbreeding, the mean at generation t is 

E [ , p l t = 2 q u + 2 q ( l - q ) a u ( I  -m I t  , 
which increases or decreases with time i f  a < 0 or a > 0, respectively. The ratio 
of total to initial change is 
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and the half-life of the process is 

In 1/2 
t l / Z  = 

1n(i -&) ’ 
which for relatively large N is t l I2  
independent of U, q and a. 

in the direction of selection, the ratio of the total to the initial change being 

1.4N. Both the ratio and half-life are 

However, with selection in infinite populations, the mean always increases 

which increases as i, U, and g decrease, especially so for recessive genes ( a  = -1). 
Likewise, the half-life of the selection process increases as i, U and q decrease, 
again, more so for recessive genes. 

When selection and finite population size occur at the same time, the resulting 
properties are intermediate to that of the theories of inbreeding and selection. 
New features appear, such as the response being opposite to the direction of 
selection. For small Niu values, the response is mainly controlled by inbreeding 
and for large Niu values, by selection. 

Standard selection theory has been developed at the first level of approxima- 
tion, ignoring terms in U*. Changes in the mean are explained in terms of the 
variance. As the gene effect increases, genetic moments of increasingly higher 
order start contributing significantly to selection response. In the formula, along 
with u2, second-order moments of the intensity of selection (iz, i2) appear, which, 
always being positive, give rise to asymmetry of response when selection is done 
in opposite directions (LATTER 1965). Specific values of the parameters N ,  a, i, 
i,, g and U may result in responses to selection in opposite directions being of 
the same sign. 

More than the quantitative accuracy of the formulae, which breaks down as 
selection proceeds, it is their diagnostic value that may contribute to a better 
understanding of the properties of this model so widely used in genetics. The 
application of these methods to two-loci models will presumably yield some 
interesting results. 

I thank BARTOLOME JODAR for the derivation of the relation of our formula and LATTER’S, 
and ANTONIO BARRERA and JAVIER TEJIDO for the computer work. Two anonymous reviewers 
also made constructive comments. 
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APPENDIX 

The degree of approximation of first- and second-order formulae is checked against expec- 
tations obtained with a transition probability matrix developed by HILL (1969a, b) and shown 
to be a suitable approximation for the transition matrix in which the selection process is 
exactly described. The matrix is obtained assuming that the gene frequencies after one genera- 
tion of selection are binomially distributed around their mean. We use second-order approxi- 
mations for the mean, and limiting values of the expectations are obtained using the matrix 
of transient states following NARAIN and ROBERTSON (1969). 

Let us use subindices 1, 2 and h to differentiate expectations coming from first- and second- 
order formulae and HILL'S transition matrix. 

In Table 2 we give the number of generations t for which the differences E [ 9 ]  t,l - E [ C ~ ] ~ , ~  
and E[9] t , z  - - E [ Q ] ~ , ~  are smaller than e =0.01, assuming additivity and a 25% selection 
pressure. 

First-order approximate formulae are valid for much longer when 9 = 0.50. So are the 
second-order approximate formulae for small 9. For large Niu values our formulae are valid 
only for the first few generations. If 9 = 1/2, first- and second-order formulae are identical. 

Expectations for second-order moments are obtained under the same assumption that uz 
is small enough to be ignored, through a similar moment generating matrix and their degree 
of approximation is of the same order of magnitude. A few particular cases of changes in the 
within-line variance are given in Table 3. 
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TABLE 3 

E[q(l-q)]t,l and E[q(l-q)] t , h  x 1000 for diflerent parameter uaEues 
(the expectations are indicated as Et,l  and Et,h) 

N 

4 
a 

U 

7. 

Generations 
t 
0 
1 
2 
3 
4 
5 
6 

10 
15 

15 
0.10 
0.20 
0.00 
1 .oo 

E t &  E t , l  
160 160 
164 164 
167 167 
168 169 
169 170 
169 171 
167 170 
146 165 
133 152 

Parameter values 
15 15 5 10 
0.10 0.10 0.10 0.05 
0.20 0.50 0.50 0.30 
0.00 0.OG 0.00 1 .oo 
1.54 1.54 1.21 1.12 

Et ,h 
160 
169 
176 
181 
183 
184 
183 
166 
128 

E t , l  
1 60 
169 
176 
182 
186 
190 
192 
193 
182 

Et,h 
250 
240 
228 
215 
20 1 
187 
173 
122 
76 

Et.1 
250 
242 
234 
226 
218 
21 1 
204 
178 
150 

E t , h  ' t , i  
250 250 
224 225 
200 203 
178 182 
158 164 
140 148 
124 133 

77 87 
42 51 

E t 3  
210 
205 
200 
194 
188 
182 
176 
151 
122 

Et.% 
210 
206 
201 
197 
191 
186 
180 
158 
131 

For the first set of parameter values, selection overrides the effects of inbreeding for  the 
first few generations, and the heterozygosity, and thus the heritability, increases. Our formula 
would predict a maximum heterozygosity of 171 at generation 5, whereas actually a maximum 
169 is attained at  generation 4. The second set of parameters shows that a higher intensity of 
selection enhances this effect, and heterozygosity increases more and for a longer period of 
time. A maximum of 194 at generation 8 (not shown in the table) is predicted, while it turns 
out to be 184 at  generation 5. The coincidence is not good, but the diagnostic value of our 
formula is clear. 

In set 3, for initial gene frequency q = 0.50, the heterozygosity is maximum at the begin- 
ning and decreases more rapidly. The absolute errors of approximation are higher. 

For small population sizes or smaller gene effects the agreement between expectations is 
much better as shown by the last two sets. As before, the degree of approximation deteriorates 
with t in all cases, more rapidly for high Niu values. 


