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ABSTRACT 

The effect of inbreeding on sociality is studied theoretically for the evo- 
lution of interactions between siblings in certain mixed mating systems that 
give rise to inbreeding: sib with random mating and selfing with random mat- 
ing. Two approaches are taken. First, specific models of altruism are studied 
for the various mating systems. In the case of the additive model, inbreeding 
facilitates the evolution of altruistic genes, Likewise, for the multiplicative 
model this is usually the case, as long as the costs of altruism are not too great. 
Second, the case of total altruism, in which the gene has zero individual fit- 
ness but increases the fitness of associates, is studied for a general fitness form- 
ulation. In this case, inbreeding often retards the ability of such genes to 
increase when rare, and the equilibrium frequency of those recessive genes 
that can increase is totally independent of the mating system and, conse- 
quently, of the amount of inbreeding. I t  appears from the results presented 
that inbreeding facilitates most forms of altruism, but retards extreme al- 
truism. These results stem from the fact that inbreeding increases the within- 
family relatedness by increasing the between-family variance in allele fre- 
quency. In most cases this facilitates altruism. However, in the case of total 
altruism, only heterozygotes can pass on the altruistic allele, and inbreeding 
tends to decrease this heterozygote class. In  either case, the important effect 
of inbreeding lies in altering the genotypic distribution of the interactions. 

INBREEDING may have important effects on the evolution of social behavior. 
Indeed, WILSON (1976) has referred to the effects of inbreeding on sociality 

as one of the “central problems” of sociobiology. In his pioneering work, HAMIL- 
TON (1964) noted that “it does seem necessary to invoke at least mild inbreeding 
if we are to explain some of the phenomena of the social insects-and indeed of 
animal sociability in general-by means of this theory.” This theme was pur- 
sued more explicitly (HAMILTON 1972), where he argued the following points: 
(1) Before socialization has begun, inbreeding may facilitate the evolution of 
sociality by increasing the likelihood of associations between individuals. (2) 
Once haploidiploid species have become social, inbreeding may diminish the 
asymmetries in relationship that exist between a female and her daughters and 
sisters. This may induce workers to breed, thereby increasing the reproductive 
efficiency of Hymenopteran nests. (3) Inbreeding may off set the problems posed 
by POlYgYnY. 
Genetics 96: 275-296 September, 1980 
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These hypothesized effects of inbreeding on sociality are based on the fact 
that, if an individual is inbred, its parents must have been related. Consequently, 
the degree of inbreeding measures the degree of relationship between parents. 
However, another well-known result of inbreeding is an increase in homozy- 
gosity, which in turn tends to increase the genetic variance in the population. 
For this reason it is not necessarily the case that interacting individuals are re- 
lated in an inbred population, although by definition the parents must be. How- 
ever, most discussions in the sociobiological literature treat inbreeding and 
relatedness as synonymous. 

Selection poses an additional problem. The theoretical tool most often used to 
study kin selection in inbreeding populations is Hamilton’s Rule: 

c /b  < V’  . (1) 

In this rule, c and b are the additive decrement and increment to the fitness of 
altruist and recipient, respectively, and “r” is a measure of their degree of 
genetic relationship. This rule is often used to study inbreeding by asking how 
“I” is affected if the individuals involved are inbred (HAMILTON 1972; SEGER 
1976; FLESNESS 1978; MICHOD and ANDERSON 1979; BARTZ 1979). However, the 
rule was derived (HAMILTON 1964; CHARNOV 1977) for outbred populations, 
along with the additional assumptions of weak selection and an additive model 
of fitness. 

Various rules analogous to (1 ) have been derived for inbred populations 
under these assumptions (MICHOD 1979; FLESNESS and HOLTZMAN 1980). In 
addition, it recently has been shown (MICHOD and HAMILTON 1980) that the 
right-hand side (RHS) of these inbred rules [MICHOD 1979, equation (3) ;  
FLESNESS and HOLTZMAN 1980, equation (lo)], although independently de- 
rived, are identical. They equal Cov (Xp, Y,) /Cov ( X p ,  X,),  which in turn 
equals ORLOVE and WOOD’S (1978) p in outbreeding populations. Here, X and 
Y denote altruist and recipient, respectively, and X,, X,, Yp,  YB denote the 
phenotype and genotype of X and Y .  These independent derivations suggest that 
the rule for inbred populations is fairly robust. 

The RHS of this inbred rule depends upon gene frequency and the degree of 
dominance, in addition to genetic relationship. In the outbred case, these compli- 
cations do not arise, and the RHS of ( 1 )  depends solely on genetic relationship 
(at least in the derivations based on identity coefficients and the additive model). 
Consequently, the dynamics of altruistic genes in inbred populations may be 
expected to differ from the outbred case. From the discussions of inbreeding in 
the sociobiological literature, one would expect the RHS of the inbred rule to 
increase as inbreeding proceeds, facilitating the evolution of sociality. However, 
as pointed out by MICHOD (1979), this is not necessarily true. Consequently, 
there is the possibility that inbreeding may have qualitatively different effects 
on sociality in different situations. 

These derivations of Hamilton’s Rule in inbred populations (MICHOD 1979; 
FLESNESS and HOLTZMAN 1980; MICHOD and HAMILTON 1980) rely on two im- 
portant assumptions. (1) Selection is weak so that traditional genetic identity 
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coefficients can be used to generate the genotypic distribution of interactions 
(for more discussion on this use o€ identity coefficients see JACQUARD 1974; 
MICHOD 1979; MICHOD and HAMILTON 1980; ABUGOV and MICHOD 1980). (2) 
These derivations do not attend to the population and mating processes that 
must ultimately give rise to the inbreeding. Both of these limitations stem from 
models that use genetic identity coefficients. The approach used below circum- 
vents the need for identity coefficients, since the mating system and population 
structure is specified explicitly. This, in turn, implicitly specifies the genetic 
context for selection. 

The purpose of the work reported here is to study the effects of inbreeding on 
sociality by studying the evolution of interactions in explicitly specified mixed 
mating systems. In order to study the effects of the mating system per se, it will 
be assumed that inbreeding has no direct effect on fitness (such as inbreeding 
depression). 

THE MODEL 

The model used here is an extension of the family-structured, frequency- 
dependent model previously studied for the case of random mating (WILLIAMS 
and WILLIAMS 1957; LEVITT 1975; SCUDO and GHISELIN 1975; CHARNOV 1977; 
CAVALLI-SFORZA and FELDMAN 1978; CHARLESWORTH 1978; WADE 1978, 1979; 
TEMPLETON 1979; MICHOD and ABUGOV 1980; ABUGOV and MICHOD 1980; 
MICHOD, submitted). For heuristic purposes (MICHOD 1980), consider a single 
diploid locus with two alleles, A,  and A,. The 6 family frequencies, offspring 
arrays and fitnesses are given in Table 1. Wi,m is defined to be the fitness 
of genotype i in family m(i = 1,2,3 corresponding to AIAI,  A,A,, A,A,, re- 
spectively). It is important to note that, since fitness is family specific, the overall 
fitness of a genotype will vary with the frequencies of the various families with- 
in which it exists. The family-specific fitness could arise either from (a) the 
interactions of the various genotypes within families, or (b) an effect mediated 
through the parents. In either case, the fitness of a genotype will vary with the 
genotypes of its parents. In the present paper, the family-specific fitness will be 
interpreted as in (a). In a subsequent paper (MICHOD, submitted for publica- 
tion), I will contrast the 2 interpretations, since they are central to the current 
controversy concerning the role of kin selection and parental manipulation in 
the evolution of sociality. 

In case (a), the family-specific fitnesses W4,m are given in Table 2, where wa,j 
is the fitness of genotype i when in association with genotype i. The family spe- 
cific fitness, Wi,m, is obtained by taking the arithmetic average of the association 
fitnesses o€ the i genotype over the various associations it has in family n. Other 
averages besides the arithmetic may be appropriate if the interactions are 
separated in time or in space. The association specific fitness, wi,j, can be further 
decomposed into specific models of behavior. Assume that the A, allele codes for 
an “altruistic” behavior. Altruism is usually considered to involve a cost in fit- 
ness, c, to the altruist and a benefit in fitness, b, to the recipient. These costs and 
benefits are generally assumed to be independent, resulting either in the additive 
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TABLE 2 

Correspondence between fitness in family structured model and fitness in 
COCKERHAM et al. (1972) 

Wj,m is the fitness d genotype i in family m (Table 1). w ~ , ~  is the fitness of genotype i in 
association with genotype j as defined by COCKERHAM et al. (1972). 

model given in Table 3a (HAMILTON 1964; WILSON 1980; CHARNOV 1977; 
WADE 1979; CAVALLI-SFORZA and FELDMAN 1978; MICHOD 1979), or the multi- 
plicative model given in Table 3b ( CAVALLI-SFORZA and FELDMAN 1978, CHARLES- 
WORTH 1978). In Table 3, h is the probability with which a heterozygote is an 
altruist and reflects the penetrance of the gene. 

In order to develop recurrence equations for the various family frequencies, 
one must specify the mating process. Here, I will consider 2 mating models: (1) 
selfing and random mating, and (2) sib and random mating. In both cases, it is 
assumed that an individual mates at random with probability t and either selfs 
or mates with a sib with probability 1 -t. 
The mixed-selfing system applies to the evolution of interactions in many 

plant species; the mixed-sib system is relevant to wolves (MECH 1970), Mexican 
jays (J. H. BROWN, personal communication) and other animals, but is most 
common in insects. Sibling matings are suspected in the harvester ant Pogo- 
nomyrex badius (CROZIER 1977) and also in various species that possess wingless 
males or partially winged microgyne females (DONISTHORPE 1927). Sib-sib or 
sib-parent mating is usual in the Pharaoh's ant Monomorium pharaonis (WILSON 
1971) and is probably common in other ant species that have abandoned the 
nuptial flight and mate in or close to the nest (e.g., Myrmica schencki, TALBOT 
1945). HAMILTON (1967) provides a list of more than 20 species of parasitic 

TABLE 3 

Specific models of altruism 

In these models, c and bare positive increments in fitaess; h is the probability that a hetero- 
zygote performs an altruistic act. 
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insects and mites that have sib mating (see also JAYAKAR and SPURWAY 1966; 
ASKEW 1968; WILSON 1971; HAMILTON 1972; CROZIER 1977). In addition, isola- 
tion by distance may be an important factor promoting inbreeding in many 
insect species (see, for example HAMILTON 1964, 1972; ALEXANDER and SHER- 
MAN 1977; PAMILO et al. 1978; GREENBERG 1979). In termites, sib-sib or sib- 
parent mating certainly exists and is probably common. Colonies are monoga- 
mous and, when a king or queen dies, they are replaced by resident eggs or 
larvae. This neotene then mates with his or her parent or sib (depending on 
whether one or both of the original pair had died). Indeed, it has been suggested 
that termite eusociality is due to their high degree of inbreeding (HAMILTON 
1972; LIN and MICHENER 1972). In conclusion, mixed mating models may be 
widely appropriate as tools to study the effects of inbreeding on sociality. 

Mixed selfing: Let gi be the genotypic frequency in the total population of i 
adults at time t. The random-mating portion of the population mates according 
to (gl + g, 4 g3)2, while the selfing portion mates according to (gl f gz + g3). 
This gives rise to the following mating scheme, where a prime superscript, I, 
denotes the t -t 1 generation: 

Note that families 2, 3 and 5 result from heterogenotypic matings and clearly 
cannot arise from selfing. 

The offspring-parent transition is given by 

with 

Equation (2) can be substituted in (3) to yield the genotypic recurrence equa- 
tions for selection in family-structured, mixed-selfing populations. In the case of 
the mixed-sib mating system to be considered shortly, the recurrence equations 
are in terms oE the family frequencies ( 5 ) .  

Special cases of this system [ (2) and ( 3 ) ]  that have been previously studied 
in the literature assume that a genotype’s fitness is independent of the family 
context and hence constant across families. In the case of pure selfing (SO), one 
obtains the model first studied by HAYMAN and  MATH HER (1953, with notation 
w1,1 = wl,4 = 5, w3,6 = W3,4 = y, and W2,4 = 1). This model has, in turn, been 
studied by many others (REEVE 1955; HALDANE 1956, but see HAYMAN and 
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MATHER 1956; KARLIN 1968). The mixed mating model (O<t<l) was first 
studied by HAYMAN (1953) for the case of constant fitness (see also KIMURA and 
OHTA 1971). This model has been repeatedly studied from different points of 
view and is now an extremely important tool for the study of selection in plant 
populations (for example, WORKMAN and JAIN 1966; JAIN and WORKMAN 1967; 
WEIR 1970; ALLARD and WORKMAN 1963; CLEGG, KAHLER and ALLARD 1978). 

Mixed sib mating: The family frequencies for the random-mating portion of 
the population are again given by (gl + gz + g3)2; however, the adult frequen- 
cies are no longer sufficient to generate the sib matings. Let Mi,k be the expected 
Mendelian frequency of genotype i in family k. The sib matings are assumed to 
occur at random within family k and are given by 

( M1.k W1.k + M2,k Wz,k M3 k W3,k )2 
__ ++- . 
wk wk wk 

The relative contribution of these sib matings to the next generation is fr~wkjw, 
so that the mating array for the sib-mated portion of the population is 

wk M1,k W1,k + Mz,k w z , k  + M3,k W3,k )’ 
- - 

wk Wk 
f f k ?  ( -  

W wk 

This leads to the following family recurrence equations under mixed-sib random 
mating: 

with f +  = l-fl-f2-f3-f5-f6 and w as before (4) 
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Pure sib mating: In the case of pure sib-mating ( t = O ) ,  system ( 5 )  can be 
with f = [f‘,f’.f”,f”,f”.f”] and 

-4 = 0 0 

Y,, 
0 c 

4wz 

0 I 0 

0 

0 

0 

w2,3 

0 

0 

- 
0 

0 

0 

0 

0 

where mt acts as a normalizing scaler to guarantee that ft 3- 1 is again a fre- 
quency vector. 

Special cases of (6) have been previously studied. With all Wi,nb’s == 1 (neu- 
tral genes), the system reduces to the generation matrix first studied by FISHER 
(1949). HAYMAN and MATHER (1953) first formulated recurrence equations 
for constant selection in pure sib-mating populations (see also KARLIN 1968). 

ANALYSIS 

The recurrence equations derived in their most general form in the last sec- 
tion are intractable. To obtain results, I have studied either (a) the local be- 
havior of these equations near fixation of either allele, which provides condi- 
tions for increase of the allele when rare or when common, or  (b) the “total” 
altruism in which the Al allele has zero individual fitness when expressed: 

Local analysis, mixed selfing: The local analysis of equations ( 2 )  and (3) 
results in the following linear equatiom for the perturbations: 
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x,=- ' { (l-t) (w1,I + l/ew2,4) + tW2.B 

x=- ' { (1-t) (w3,6 + %w2,4) + tW2,Z 

w3,6 

+[ [ tW2, ,  - (1-t) (Wl,l - 1/Wz,4)]2 4- 2(1-t)W1,4Wz,3]~} (8a) 
at (0,l) and 

WlJ 
,+[[tWz,z - (l,-t>(Wa,,- 1/2wz,4)]' f 2t( l - t )w3,4w~,3]~} (8b) 

at (1,O). It is apparent by inspection (or differentiation) of equations (8) that 
no simple relationship between the dominant eigenvalues and t exists. Note that 
if t I= 1 , equations (8) become 

which are identical to the results obtained elsewhere for random mating popu- 
lations (TEMPLETON 1979; MICHOD, submitted for publication). 

Local anaZysis, mixed sib mating: The local analysis of ( 5 )  at both fixation 
equilibria, (O,O,O,O,l) and (l,O,O,O,O) , results in the following linear equations 
for the perturbations, 

Sft+l=B6ft , (10) 

with Sf = (Sfl, Sf2, Sf3, Sf5,  S f 6 )  at (0,0,0,0,1) and Sf = (sf67 Sf4, Sf3, Sf2, S f d  at 
(l,O,O,O,O) with Sf4 = 1-sfl-sfZ-sf3-sf~-~f6. The elements of matrix B are 
given in Table 4 for the two equilibria. Applying row and column operations to 
obtain the characteristic equation, B-IX reduces to a matrix of the following form 

a-A b 0 o c  
0 d-A 0 O e  

1 i k-A I 
f 
0 
m+A n+h p+A q + A  r-h 

g -A O h  (11) 
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TABLE 5 

Elements of reduced form of (B-Ih) for use in (11); all elements should be diuided by W3,6 
in the case of (O,O,O,O,l) and Wl,l in the case of (I,O,O,O,O) 

a 
b 

c 

d 
e 
f 
g 
h 

1 
k 
1 
m 
n 
P 
Q 

I. 

r 

with the elements given in Table 5 for the two equilibria. Upon evaluating the 
determinant of (1 1 ) , the following characteristic equation is obtained: 

with 
A5 4- aX4 @A3 + yX2 + AA f E = 0 (12) 

a = - d - k - c - r - a - 1 - h - e  
p = d ( k +  c + r  4- a +  1 + h )  + e ( a -  i 4- k -  n - g -  b )  

4- k ( c 4 - r  + a  + h) 4- h ( a -  j - p )  - l ( q  - a )  - mc -k ar - fc 
y = - cdk - drk - akd + mcd - ard 4- qld 

- lad + fcd - had + hjd - hkd i- hpd + bek - bem - bef f ckm - ark 4- qla 
- jcf + jha - kcf - kha - cpf - pha 
- hjq + hkp + eai - eak 4- ean f eag 
- ejg - epg -I- ekg - eqi + ekn 

A = - cdkm 4- arkd - glad 4- ifcd - jhad 
- kfcd f khad f pfcd - phud + hiqd 
- hkpd + bekm - bejf f bekf - bepf 
~ cfjq f cfkp 4- hajq - hakp -I- eajg + eilpg - eakg + eaqi - eakn - egjq -I- egpk 

- bejqf f bekpf 4- eagjq - eagpk. 
E = cdjqf - cdkpf i- dkpha - djqha 
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Solutions to fifth-degree polynomials are generally not obtainable analyti- 
cally. Consequently, to attain some insight into the effects of inbreeding, I have 
resorted to solving (12) numerically for the two models of altruism in Table 3 
for different values of c, b, h and t. In all cases, the predictions of the local 
analysis at the fixation equilibria were checked by computer simulation of (5). 
Although a systematic survey was not conducted, for all cases encountered in 
which the two equilibria were unstable, there was a single stable interior equi- 
librium gene frequency. A similar point was made by CAVALLI-SFORZA and 
FELDMAN (1 978) for random-mating populations. 

In all cases studied for the additive model (Table 3a), decreasing t served to 
increase X [ (8), or the dominant root of (12)] and hence the evolutionary pros- 
pects of the altruistic gene (see legend of Figure 1). Hence, it appears that in- 
breeding via selfing or sib-mating facilitates the increase of such additive genes. 
However, for the multiplicative model, cases in which inbreeding decreased the 
evolutionary prospects of the gene were found. The case of zero individual fit- 
ness (c= 1) will be discussed in more detail shortly. Here, by increasing the 
frequency of inbred matings, the chance that the gene will increase when rare 
was decreased (e.g., Figure 2). However, this effect of inbreeding changes as the 
cost of altruism decreases from .c = 1 .O (total altruism). In Figure 1, the c / b  
ratio at which the maximum eigenvalue of (12) equals one, cJb*, is given as a 
function of inbreeding for various values of c and h in the multiplicative model. 
For the hypothetical gene to increase, its cost-benefit ratio must be less than 
cJb*. As shown in Figure 1 for c = 0.75, t has a variety of effects that depend 
upon h, the degree of dominance. For lower values of h, decreasing t tends to 
decrease c/b*. However, for higher penetrance ( h  = 0.75 and h = 1.0), decreas- 
ing t facilitates increase of the gene when rare. The (l,O,O,O,O) equilibrium was 
always unstable for c = 0.75 over any reasonable range of benefits. However 
for c = 0.25, sib mating always acts to facilitate the initial evolutionary pros- 
pects of the altruist gene. Dominance has little effect on the qualitative shape of 
the curve in this case (c = 0.25). Although not presented in Figure 1, similar 
curves were generated over a range of costs and dominance for the multiplica- 
tive model (c = 0.90,0.80,0.75, 0.50,0.25,0.20,0.10; h = 0.0-1.0 in increments 
of . I) .  As expected, c/b* increased as the costs decreased for a given h and t. For 
lower costs (i.~., c = 0.50, 0.25, 0.20, O.lO), cJb* increased with decreasing t .  In 
addition, as c decreased over this range (c < 0.50), the convexity of the curves in- 
creased. consequently, for lower costs, inbreeding facilitates altruism. The curves 
for c = 0.90, 0.80 were similar to those presented in Figure 1 for c = 0.75, 
although displaced slightly downward. 

Total altruism: Consider the case of genes that, when expressed, have zero 
individual fitness. Although individuals expressing the gene do not reproduce, it 
is assumed that they do affect the fitness of their associates. Many examples of 
such traits exist in nature, fo r  example, the sterile castes of insect societies (see 
also the discussion of the “sacrificial lamb” phenotype in TEMPLETON 1979). 
Although it is generally thought that the caste-determining mechanism is 
strongly environmental (WILSON 1971), there are some well-documented cases 
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P R O B A B I L I T Y  OF RANDOPI PIRTINS C t >  

FIGURE l.--c/b* for the multiplicative model as a function of the level of outbreeding, t ,  for 
the mixed-sib mating system. The additive model (Table 3a) always generated curves similar 
in shape to the c = 0.25 curve given here, except that the ‘‘y intercept” ( t  = 1.0) was always 
c/b* = 0.50. See text for explanation. 

in which it is strongly genetic (e.g., Melipona: KERR 1950, 1969). In addition, 
this case may have some relevance to the early stages of insect sociality. For ex- 
ample, consider a solitary wasp species and a mutant gene that confers either of 
the following bzhaviors on a female: associate with your sister and work for her 
offspring, or stay at home and work for your mother by helping to rear your 
sisters. In either case, the model is relevant. First, this female wasp would have 
zero individual fitness, but would increase the fitness of its sibling associates. 
Second, mutations are often recessive, as will be assumed shortly. 

For such genes, we have Wl,m = 0 for m = 1,2,4 and consequently the only 
possible families are 4,5 and 6 (Table 1). In the case of the mixed-selfing mating 
system, equations (2) and ( 3 )  become 

& = O  

g‘3 = 1 - gz 
g’Z w = ?‘h [ ( 1-t) g2 f tgZZ] w2.4 + tg”g2wZ,5 (13) 

with 
- 
W =Z [ ( l - t ) g z  + tg2’]r;ljq + 2tg3g2W5 + [ (1-t) g3 + tg3’] W S , ~  . 
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In this case, it is possible to solve for the interior equibrium, &. If the gene is 
recessive, we have Wz,4 = TY,,, and W2,5 ,= W3,5 = W3,6 =1 .O, the baseline fit- 
ness. In this case, & is given as the positive root of the following quadratic: 

g,ZtA+&[(l-t)A-ttB] - (l-t)B=O (14) 

with 

Solving (14) yields 

Consequently, as long as W2,4 > 2, there exists a unique interior equilibrium 2, 
given by (15). It is also possible to show by linearizing (13) at g2 that g2 is 
locally stable whenever it exists. Note that this equilibrium does not depend 
upon the amount of selfing, hence upon the amount of inbreeding, and it is 
identical to that attained under pure selfing ( t  = 0). It is also possible to show 
(MICHOD, submitted for publication) that (15) holds in the case of random 
mating [i.e., t = 1 in (e)], and that in this case it is globally stable. In addition, 
this equilibrium is attained under the mixed-sib mating system. 

For pure sib-mating, the dominant root of (6) becomes 

h = 1/4 4- 1/6W,,, + 1/2[1/4 -/- 1 /9W~,~] '~ '  . 

The corresponding eigenvector is 

0 

0 

0 

1 

W*,4/3(X - 54) 
w2:4 + w2,4 

12(A-l) 12(A-I)(A-yz) 

which, after some algebra, yields the equilibrium adult genotypic frequencies 
given in (15). I have not been able to solve explicitly for the internal equilibria 
of the mixed-sib mating system [ ( 5 )  with O < t < l ]  even in this special case 
( W,,,=O, A, recessive). By using the multiplicative model with c = 1 .O, A,A, 
individuals have zero fitness in all families. This is not normally possible with 
the additive model, although, if the A, homozygotes are forced to have zero 
fitness, the fitnesses of the remaining genotypes are identical uader either the 
additive or multiplicative model ( A ,  recessive; see Table 3). Using the multipli- 
cative model with c = 1.0, I have verified by simulation of ( 5 )  that gZ (15) is 
attained under the mixed-sib mating system for various t. In these simulations, 
the family frequencies were not the same at equilibrium; however, the adult 
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genotypic frequencies were identical and independent of t for the many cases 
studied. The rate of approach to this equilibrium, however, was sensitive to t 
and increased with increasing inbreeding under both the mixed-sib and mixed- 
selfing mating system. 

Consequently, the mating system appears to exert no important effect on the 
evolutionary outcome of these recessive genes. It is important to note that this 
conclusion appears to be independent of the particular model of altruism (for 
example, those considered in Table 3) and that it holds for any recessive gene 
with zero individual fitness, as long as heterozygotes and the other homozy- 
gotes have higher fitness when in association with individuals homozygous for 
the gene. While the term “altruistic” captures these properties, there is nothing 
in  the model at this point to make it explicit. Furthermore, there is nothing ex- 
plicit that restricts these properties to the effects of behavior, although it is 
natural to interpret them in that light. 

We now turn to consider the fixation equilibria for these genes. It is obvious 
that we need not concern ourselves with fixation of the A ,  allele, since genes 
with zero individual fitness could never reach fixation. In the case of mixed- 
selfing and arbitrary dominance, equation ($a) becomes 

(16) 

Applying (16) to the case just discussed, a recessive gene will increase in fre- 
quency when rare if W2,4 > 2, which is the same Condition required above for 
there to be a stable, interior equilibrium. To determine how inbreeding via 
selfing affects the condition for increase when rare, differentiate (16) to obtain 

A = W;G (tW2.a + $4 (1-1 W,,,} . 

which is positve as long as $4 WZ,, < W2,5.  Consequently, if xw2.4 < W2,5, in- 
breeding (as a result of selfing) actually decreases the evolutionary prospects 
fo r  the altruistic gene. Simulations of the multiplicative model with c = 1.0 and 
partial penetrance (i.e., W,,,=O and O<h<l) indicate that if selfing decreases 
A, it also decreases the equilibrium frequency ultimately reached by the gene. 

In retrospect, all this makes sense. As t decreases (inbreeding increases), the 
frequency of the homogenotypic matings increase at the expense of heterogeno- 
typic matings (equation [2] ) . Consequently, inbreeding will increase families 
4 and 6, while decreasing the frequency of family 5 (everything else being 
equal). The effect of this shift in family frequencies (due to inbreeding) on 
the evolution of the social gene will depend upon how well the gene does in the 
context of the two families that carry the gene, W2,4 and W,,,, as (17) indicates. 
Consequently, the important effect o i  inbreeding on sociality lies in its altering 
the genotypic distribution of the interactions by changing the family frequencies. 

The exact effect of inbreeding on the genotypic distribution of interactions in 
the case of the mixed-sib mating system is more difficult to tease out analyti- 
cally. However, the net result appears to be the same. Using the multiplicative 
model (Table 3b) with c = 1 and 0 < h < 1, the benefit (b*)  was found at which 
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C l  MIXED S I B  M A T I N G  
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the dominant root of (12) equals unity fo r  the (O,O,O,O,l) equilibrium (Table 5 ) .  
Again, in the case of recessive genes (h=O), no effect of t on c/b* was found. For 
partial penetrance, inbreeding may decrease the ability of the gene to increase 
when rare. In Figure 2, the case of h = 0.25 is presented for both mating systems. 
For either mating system, inbreeding (decreasing t )  decreases c/b*. In addition, 
cJb* is lower for the mixed-selfing system than for the mixed-sib mating system. 

DISCUSSION 

Some of the results derived in the last section appear to contradict the hypothe- 
sized effects of inbreeding discussed in the sociobiological literature. To assess 
the expected effects of the mating system according to current tenets of socio- 
biology, we need to know how each system affects the relatedness between 
interacting individuals. 
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Following the procedures of WRIGHT (1965), it i s  possible to analyze the 
genetic structure of specified mating systems by F statistics. The total popula- 
tion at any point in time is divided into families of six genotypic classes. Since 
the context of selection is the same in families with the same parental genotypes, 
there are six subpopulations, S (S=1,2, ... ,6), in the family-structured model 
(Table 1). P I S  is defined as the correlation between alleles in an individual of 
family S relative to alleles picked at random from the family, F S T  is the corre- 
lation between alleels picked at random from a family relative to alleles from 
the total population, and F I T  is the correlation between alleles in an individual 
relative to alleles picked at random from the total population. F I X  can be cal- 
culated either by the statistical method of WRIGHT (1965) or from the deviation 
of the observed heterozygote frequencies, Hs, within families, 

Consider, for example, family 2 in which the frequency of the altruistic allele is 
p z  = % with H z  = s. Consequently, by (18) F I ,  i= - 1/3. Likewise, F,, = F16 = 
FI%=O.O, F I 2  '= F I 5  ,= - 1/3 and F I ,  = - 1.0. Consequently, in a family-struc- 
tured population, alleles in individuals are equally or less correlated than if 
they were randomly combined in a population with the same gene frequencies 
as the families. As usual, F S T  is calculated as 

where up2 is the variance in gene frequency among families and p is the average 
frequency of the altruistic gene at time t .  Using the relation 

FIT = FST f FIS ( 1 - F , T )  , (20) 

where ES is the average of FIs and F S T  is given by (19), the F statistics can be 
calculated each generation. This allows one to analyze the interrelationships of 
selection, the mating system and genetic relatedness. 

A measure of relatedness between individuals X and Y who interact within 
subpopulations is (HAMILTON 1971) 

HAMILTON (1971) cautioned against using a single measure of relatedness for 
studying evolution in structured populations. However, as he suggested, bxy 
provides some assessment of relatedness in structured populations for use in dis- 
cussions of kin selection. In Figure 3,  bxy is given for the two mating systems 
and several values of t. These curves apply only to neutral genes. Based on 
these considerations of the effects of the mating system on relatedness, it is 
expected that inbreeding should always facilitate the evolution of altruism. 
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GENERRTION 

FIGURE 3.-Relatedness (Equation 21) for the two mixed mating systems and various out- 
breeding rates, t. These curves are for neutral genes only and measure the between group vari- 
ance on which social evolution depends. See text for explanation. 

The reason for this is understandable. Recent work has clarified the population 
processes underlying kin selection in family structured populations (WADE 
1979, 1980; MICHOD, submitted for publication). A central result of this work 
is that the process of kin selection between sibs relies upon the differential pro- 
duction of family groups. The efficacy of this group-selection process (and hence 
kin selection) depends upon the variance in gene frequency between families, 
which is measured by FsT (1 9). As mentioned in the introduction, inbreeding 
may be expected to increase this variance, and this increase is directly respon- 
sible [through (19) and (21)] for the increases in the overall relatedness within 
families given in Figure 3. This increase in the between-group variance results 
in increased se!ection at the group level and hence should facilitate altruism. This 
theme is pursued more explicitly by BREDEN and WADE (submitted for publi- 
cation), where the various within- and between-family components of variance 
are studied in the mixed-sib mating system for certain cases of the additive 
model of altruism. BREDEN and WADE (submitted for publication) show that 
inbreeding facilitates the increase of altruistic genes by increasing the variance 
between families, but decreasing it within families. Since altruism is always 
selected against within families, but favored by between-family selection, the 
evolutionary prospects of altruism are enhanced by inbreeding. 

The results of the last section are consistent with these considerations of 
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between- and within-group variance, but serve to emphasize the complicating 
effects of selection. For those genes with low or  zero individual fitness (W1,,=0) , 
only families 4,5 and 6 exist to pass on the gene. The variance between families 
is thus severely constrained, since the families with high frequencies of the A,  
allele, 1 and 2 (pl = 1.0, pz = 0.75), are nonexistent. This was reflected in simu- 
lations of the multiplicative model for c = 1.0, in which FdT rarely exceeded 
0.3 and bxu often dropped below 0.5, the value for outbreeding populations. In  
the case of mixed selfing, inbreeding increases the frequencies of families 4 and 
6 at the expense of family 5 [see equation (2)]. This will tend to increase the 
between-group variance, because families 4 and 6 have the extreme gene 
frequencies in the case of total altruism (families 1, 2 and 3 are nonexistent; 
p 4  = 0.5, p5  = 0.25, ps = 0.0). However, for total altruism, only heterozygotes 
can pass on the altruistic allele and inbreeding increases the frequency of al- 
truistic homozygotes by increasing family 4. The net effect of these considera- 
tions will depend upon how well the heterozygotes do in the context of the two 
families that can pass on the gene, W2,4 and W,,,, as (1  7) indicates. The point to 
stress is that inbreeding alters the genotypic distribution of the interactions by 
changing family frequencies. The case of total altruism may be extreme, but it 
serves to illustrate the interaction of selection with the mating system in deter- 
mining the final effect of this alteration on sociality. 

The results of the last section (Figures 1 and 2), whereby inbreeding retards 
sociality, rely on the altruist having a low overall fitness. As the altruist’s fitness 
is increased for the multiplicative model, inbreeding serves to facilitate sociality 
(Figure 1 ) .  These results are consistent with the results of the additive model 
and those of BREDEN and WADE (submitted for publication), in which inbreed- 
ing always facilitates altruism. For the additive model, it is not naturally possi- 
ble to study extreme forms of altruism in which the altruist has a low fitness in 
all families. In both models, if a large cost is assumed (c-1.0) , large benefits are 
required for the gene to increase. However, in the additive model these large 
costs and benefits average out, leaving the altruist with an overall fitness that is 
intermediate. This effect is reversed in the multiplicative model, where high 
costs have a more pronounced affect, even if the benefits are high. 

In conclusion, inbreeding will often serve to facilitate sociality by increasing 
the between-group variance and within-group relatedness, so necessary for the 
evolution of social traits. This effect may be overcome for certain extreme social 
traits, such as total altruism. In this case, inbreeding may actually retard soci- 
ality by decreasing the frequency of the heterozygous class that can pass on the 
gene. In either circumstance, the important effect of inbreeding is altering the 
genotypic distribution of the interactions, which can only be understood once the 
mating system is specified. 
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