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ABSTRACT 
The association of alleles among different loci was studied in natural 

populations of Hordeum spontaneum, the evolutionary progenitor of cultivated 
barley. The variance of the number of heterozygous loci in two randomly 
chosen gametes affords a useful measure of such association. The behavior of 
this statistic in several particular models is described. Generally, linkage (ga- 
metic phase) disequilibrium tends to increase the variance above the value 
expected under complete independence. This increase is greatest when dis- 
equilibria are such as to maximize the sum of squares of the two-locus gametic 
frequencies.-When data on several loci per individual are available, the ob- 
served variance may be tested for its agreement with that expected under the 
hypothesis of complete interlocus independence, using the sampling theory of 
this model. When applied to allozyme data from 26 polymorphic populations of 
wild barley, this test demonstrated the presence of geographically widespread 
multilocus organization. On average, the variance was 80% higher than ex- 
pected under random association. Gametic frequencies for four esterase loci 
in both of these populations of wild barley and two composite crosses of culti- 
vated barley were analyzed. Most generations of the composites showed less 
multilocus structure, as measured by the indices of association, than the wild 
populations. 

HE concept of linkage or gametic disequilibrium, or the association of par- r ticular alleles among loci, is central to modern population genetics (see 
WEIR 1979; HEDRICK, JAIN and HOLDEN 1978; KARLIN 1975 for recent reviews). 
Several measures of gametic disequilibrium have been used. The most common 
is: 

Dik = g (Ai&) - p ( A i )  p ( & )  (1) 

where Dik is the difference between the observed frequency of the gamete carry- 
ing both alleles A& [g (A&)]  and its expected frequency assuming no asso- 
ciation [ p  ( A i )  p (&)I. This and related measures are relatively manageable 
when there are few alleles at a few loci. However, with multiple alleles and 
many loci, the number of measures quickly increases beyond comprehension. 
It would be desirable to have a set of summary statistics that, in some defined 
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sense, describes the extent of multilocus structure, at the risk of subsuming in- 
formation on particular allelic combinations. This is analogous to summarizing 
genetic diversity at single loci by such measures as the mean number of alleles 
p a  locus, or  the mean panmictic heterozygosity per locus [an analog of SIMP- 
SON’S (1949) index of species diversity]. Summary statistics could be useful for 
comparing various kinds of species. Population genetic data on several loci of 
the same individual are now commonly collected, using electrophoresis, yet 
multilocus patterns are rarely studied. 

Following a suggestion of SVED (1968), we propose to use multilocus measures, 
related to the single-locus SIMPSON index, to measure multilocus association. 
These measures are based on the observed distribution of the random variable, 
the number of heterozygous loci in two randomly chosen gametes, and in par- 
ticular, on the lower central moments of this distribution. The statistic of most 
use is the variance of this distribution. This quantity has received some theoreti- 
cal attention (SVED 1968; HILL 1975; FRANKLIN 1977; AVERY and HILL 1979). 
More importantly, however, the variance has a biological appeal. For a given 
mean heterozygosity, a population with a high variance will, on outbreeding, 
produce more multiply heterozygous individuals and more multiply homozy- 
gous individuals than if the variance were low. On inbreeding, such a population 
produces few strains with greater genetic differentiation between them. 

In this paper, we shall first develop the underlying theory of OUT measures and 
then apply them to studies of genetic organization in two composite populations 
of barley, Hordeum uulgare (CLEGG, ALLARD and KAHLER 1972) and Israeli 
populations of wild barley, H .  spontaneum (NEVO et al. 1979). 

THEORY O F  MEASURES OF MULTILOCUS STRUCTURE 

Consider an infinite population of gametes with genotype known at each of m 
loci. The random variable K is defined as the number of loci that are different 
(heterozygous) when two such random gametes are compared at these loci 
( K  = 0, 1, . . . , m). The distribution of this random variable, f ( K ) ,  will depend 
on the degree of polymorphism at each of the m loci, as well as on any correla- 
tions in allelic variants among loci over gametes. In this section, the relations be- 
tween the lower moments of the distribution of K ,  the allele frequencies and 
conventional parameters of gametic disequilibrium [e.g., formula (1 ) above] 
are given in several cases. The indices of multilocus structure are then defined, 
and a test of the null hypothesis that the observed variance equals that expected 
under independent association of alleles is outlined. 

Interlocus independence of alleles: Suppose that no correlation exists and that 
the alleles at each locus are entirely independent in occurrence. Let pi i  denote 
the population frequency of the ith allele at the j t h  locus, and let hj (,= 1 - 3 p , , 2 )  

denote the genic diversity (the panmictic heterozygosity) at the jth locus. Under 
the assumption of locus independence, the random variable K is distributed as 

1. 31. 
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the sum of m independent Bernoulli distributions with moment-generating func- 
tion: 

m 

j=i 
G(8) = I1 (hie0 + 1-hj) . (2)  

Differentiating this generating function with respect to 8 and setting 0 = 0 yields 
E ( K )  = zhj, and the following central moments: 

(3) 

(4) 
( 5 )  

U; = E [K-E  ( K )  l 2  = Zhj - Zhg 

E [ K  - E ( K )  ] 
E [ K  - E ( K )  ] *  

= Xhj - 3xh; + 2Xh: 
= ~ h j  - 7xh; + 12xh; - 6zh4 + 3 [xhj - Eh:] 

where all summations are over j = l,2, . . , , m .  If the {hi} are all equal to h, 
formula ( 5 )  reduces to the form of KENDALL and STUART’S (1969) formula 5.5. 
Two loci, multiple alleles, general case: Let the frequency of the gamete with 

with the ith allele at the A locus and the kth allele at the B locus be: 

(6) 
The frequency distribution for the number of loci that differ in their allelic con- 
stitution in a pair of gametes, f ( K )  ; K = 0,1,2, is 

g i k  = pii  p z k  + Dik - 

f ( 0 )  = ;? g i k  (7) 

f ( l )  = ? p ” , , + ? P 2  zk - 2 + $ g f k  

f ( 2 )  = 1  - ~ P ’ , , - - P ; k + y g ; k  ’ 

E ( K )  = 2 - 3 p:i-  pzk = hl + h, 

= (2-hI-hZ) (h,+h,-l) + 2 32 g t k  

From this it follows that the mean and variance are: 

( 8 )  

(9) 

(10) 

The deviation of the variance of the number of heterozygous loci (U-) from 
its value (formula 3), assuming the loci are independent, is given by the two 
terms in expression ( I O )  that involve linkage disequilibrium. Given fixed values 
for the allele frequencies { p l i ;  i = 1,2, . . . I and p z k ;  k = 1,2, . . . s}, where 
there are r alleles at the first locus and s at the second locus, the variance wil l  
depend on the coefficients of disequilibrium {Dik}. This conditional variance 
(given the allele frequencies) can be differentiated with respect to the (Dik}, 
subject to the ( r  + s) side-conditions: 

a%= hl + h, - h2,- h2, + 2 XZ gilt - 2 (1-hl) (l-ha) 

= h1 f h, - ha - h2 4 32 plip&ik f 2 &X %k DZ sk . 
1 2  %k 

Dik == z Dik = 0. 
i k 

The solution for the one stationary point is: 
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This solution is permissible only if 

The point is a minimum because all second differentials are positive. At this 
point, the variance is 

rSpli.7 rsp2k 2 rpli + sp2k - 1 2 0, rS(p1i d- P2k - 1 )  - 

min { a i }  ,=h, 4- h, - hi - hi - 2 [l--hl-l/r] [l--h,-l/s] . ( 1 2 )  

The last term is either positive or zero for completely “even” allele frequency 
distributions. In general, therefore, as disequilibria depart from the value ( 1  I ) ,  
the conditional variance increases. Comparing ( 1  0) and (12 )  , the minimum 
point coincides with zero disequilibrium only when at least one of the loci has 
an “even” frequency distribution (i.e., pl i  = l / r ,  for all i) . 

Unfortunately, the maximum value of the conditional variance is harder to 
define, as it depends on the side conditions that g , k  2 0, for all i and k, and ZX 
gzk = 1. It is clear from equation ( 9 )  that, for fixed {hi}, the variance is a maxi- 
mum when the disequilibria are such as to maximize the sum of squares of the 
two-locus gametic frequencies. This property is comparable to the behavior of 
the single-locus diversity measure {hi) w d e r  various allelic frequency distri- 
butions. For a fixed number of alleles, the diversity is a maximum in “even” 
distributions, when the sum of squares of allelic frequencies is minimized. 

Three loci, two alleles per locus: Our aim in this section is to show how first- 
order disequilibria over several loci and the second-order disequilibrium con- 
tribute to the central moments of the distribution f ( K ) .  For convenience, the 
notation in the three-locus two-allele case is varied to reduce the subscripts, and 
the frequency of the allele A,, at the A locus is denoted as p ,  that of A, is q 
(= 1-p) ,  of B,  is U ,  of B,  is U (= 1-U) and C, is x and C, is y (= 1-x), the dis- 
equilibrium between the AB loci as D,, between AC as D, and BC and D3, and 
the second-order disequilibrium as T .  The eight three-locus gametic frequencies 
are functions of these seven parameters (specifically in this notation, in Table 
V of BROWN 1975). For example, P(A,B,C,)  = pux + pD3 + uD, + xDl + T.  
The genic diversities for the A, B and C loci are h,, h, and h3, respectively. The 
frequency distribution for the number of heterozygous loci in two random unit- 
ing gametes, 

is computed in terms of these seven parameters. The following are the moments 
of this distribution: 

ik 

U ( K )  ; K = 071,273) , 

3 
E ( K )  z hj 

j=1 

3 

0’ = ,x h j ( 1 -hi) + 4Dl(q-p) ( U-U) f 402 ( Q-p) ( y-X) 
K 111 
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- 12(v-u) ( y -x )  [20,02 + D,(l+hz+h,)I 

+ 12T(q--p) (y -x)  ( v - U )  - 48T2 . 
24D: (I-hl-hz) f 240; (I-h1-h.q) +I- 24Di (I--hz-h3) + 48 (Y-x )  DIT 3- 48 ( V-U)  DJ’ + 48 (4-p) DsT 

(14) 
Thus, the two-locus associations between all possible pairs of m loci contribute 
additively to the variance of K .  In general: 

m m m  

u2 = :hi - xh! 4- 2? E .  Z Z [2pjiptkD:: + (D!” zk ’1 ( 1 5 )  
K 3 3 x>3 * k 

where D:: is the disequilibrium between the it” allele at the jth locus and the kth 
allele at the lth locus. SVED’S (1968) equation ( 4 )  and AVERY and HILL’S (1979) 
equation ( I O )  are both diallelic cases of (15). An alternative expression for ( 1 5 ) ,  
which is in the format of ( 9 ) ,  is: 

where g$ is the frequency of the two-locus gamete with the it” allele a the p” 
locus and the ktb allele at the lth locus. The variance (c’,) is independent of 
higher-order associations and is cumulative over locus pairs. It therefore tends 
to increase with “more” disequilibria within a pair and over pairs. The third 
central moment (14) is a complex function of both second- and third-order as- 
sociation. If, however, there is no first-order association, so that all the D; are 
zero, formula (14) reduces considerably. Thus, the third moment of the dis- 
tibution could be a useful index of more complex disequilibria when two-locus 
disequilibria are not evident, especially when allele frequency distributions are 

Multiple loci, absolute and complete msociutian: As the number of loci are 
increased, if they are independent, the variance of K increases ( 1 5 ) .  It would be 
desirable for any index of association to have a standard that did not increase 
with increasing numbers of loci scored. Furthermore, such an index should 
ideally be independent of single-locus allele frequency distributions. One pos- 
sibility is to divide the variance (15) by its expected value, assuming inde- 
pendence and the same single-locus diversities (3) .  We now consider some par- 
ticular cases of intense association to see what standardization is achieved by 
such a division. 

CLEGG et al. (1976) referred to the distinction between absolute association 
and complete association. For absolute multilocus association, each allele at each 
locus is uniquely associated with a distinctive allele at all other loci (e.g., 
A,B,C,D, . . . A,B,C,D, . . .) . Complete association however signifies only that 
some combinations are completely lacking (e.g., A,B,, A$,, A$, present; A&, 
absent). 

Consider m polymorphic loci at each of which the alleles are absolutely as- 
sociated. Therefore, pliy the frequency of the ith allele at the p” locus, equals p i  
for all m loci. Further: 

even.” 66  

f.hf = m(l-$?y 
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The distribution, { f  ( K )  ; K = 0,1, . . . , m},  of the number of heterozygous com- 
parisons in two random gametes is: 

f (0) = +pi; f ( m )  = 1 - ?pi and f (K) = 0 for K # 0, m. 

The variance of this distribution is: 

Then the ratio of the variance, to that expected for complete independence (3) 
is: 

U;/ [:hj - 3h2] = m . (17 )  
3 3  

This ratio is independent of the allele frequencies, but is directly proportional to 
the number of loci scored. Thus, in the case of absolute association, standardiza- 
tion of the effect of locus number is not achieved by the division. 

The case of complete association is much more complex because it covers all 
kinds of absences, starting with the absence of just one single gametic type. The 
question is whether the ratio examined in (17 )  would be expected to increase 
with increasing number of loci (m)  , but where the proportion of completely as- 
sociated loci to total loci scored remains constant. 

One simple example of this problem is as follows: Suppose that only two loci 
are studied and each has two alleles. Let the gamete frequency of A,Bl be 1 - 2 ~ ~  
and those of A,B, and A,B, each be p. (When p = 0.5, we have the simplest case 
of absolute association.) Then, using ( l o ) ,  the ratio is: 

1 - 4 p f 8 p 2 - 4 p 3  
(18) - - 0; 

qhj-Ehz (1-~)[1-2~(1-~)] a 

3 1  

Now, suppose that gametes are scored at two additional loci where frequency of 
C,D, is again 1 - 2 ~ ~  and those of CID, and C,Dl are p. Further suppose that al- 
leles at loci C and D are independent of those at A and B, i.e., the frequency of 
the gamete A,B,C,D1 is (1-2p) z. The ratio, when computed, has the same value 
as (18) and thus is independent of the number of sets of similarly associated loci. 
rWhen p = 0.5, the ratio (18) equals 2, in agreement with (1 7)  .] Clearly, how- 
ever, the ratio is not generally independent of either the number of loci scored 
or the single-locus allele frequencies. Yet, in certain circumstances (namely in- 
dependence of loci and/or absolute association), the ratio may become inde- 
pendent of either or  both of these. Generally, the ratio achieves only limited 
standardization. It may prove impossible to design a better statistic for associa- 
tion intensity €or comparing the results from different studies that are based 
on radically different numbers of loci or on loci with widely differing levels of 
polymorphism.. 

Indices of intensity of multilocus structure: With the above treatment and 
qualifications in mind, we propose a series of indices of multilocus structure 
based on the observed moments of the distribution of the number of heterozy- 
gous comparisons. Let m ( i )  denote the values of the ita central moment com- 
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puted from the observed distribution, and let p ( i )  denote the expected value of 
the ith central moment, given the single-locus diversities (hj)  and the assump- 
tion of independence of loci [computed from (3), (4) and (5) above]. Then we 
define : 

(19) 

(20) 

(21) 

X ( i )  = [m( i ) /p( i ) ]  - 1 ( i  = 2,3,. . .) 
as measures of multilocus structure. [For i = 1, X ( 1 )  equals zero.] For i = 2, 

X ( 2 )  = S2,/(Xhj - Eh;.) - 1 

X ( 3 )  = m(3) / (Zhj  - 3Xhg + 2Eh3j) - 1. 

where m ( 2 )  = s i .  For i = 3, 

The division by p ( i )  renders the X measures less dependent on the values of hj, 
and subtracting one gives expected values of the X ( i )  of zero for all i under in- 
dependence. 

Estimation: Two different experimental situations may be envisaged. In the 
first case (I) of a predominantly inbreeding species (such as Horbum spon- 
taneum) , nearly all plants scored are homozygous for all marker loci. The data 
then are the observed frequencies of the m-locus gametic types. The second case 
(11) is in random-mating populations, in which each locus is in Hardy-Weinberg 
equilibrium. 

The moments of the distribution can be estimated by two different methods. 
One method (A) is based on formula (15) and conceivably similar expressions 
not derived here for the higher moments. From a random sample of n gametes 
(I) or n zygotes (11), the values of {hi} for all loci { p i * }  for all alleles and {OIL} 
for all alleles at all possible pairs of loci are estimated. Then, the single statistic 
s i ,  which is an estimate of the population value U>, is computed from formula 
(15). I t  is known from the estimation theory of the { h j }  (SIMPSON 1949) and 
the {Di;} (HILL 1974) that the sample estimates of those parameters have a bias 
factor of the order of n-l. Therefore, sihas a bias of similar order of magnitude. 

The second method (B) is by forming an empirical distribution of the number 
of heterozygous comparisons and computing the moments of this distribution. In 
the case of m-locus gametic data (case I) ,  every gamete in the sample is com- 
pared with itself and every other gamete in turn, and the number of heterozy- 
gous loci is recorded. Thus, there are n2 comparisons that form a Punnett square 
We have found that this procedure gives an estimate of si numerically identical 
to that of method A above; in addition, it permits estimates of the higher mo- 
ments to  be readily computed. 

In the case of multilocus diploid zygotes (I1 above), it is possible to record 
directly the number of heterozygous loci per individual to obtain the empirical 
distribution. Any departure from exact panmixia would, however, lead to esti- 
mates numerically different from method A. The bias and efficiency of this 
method have yet to be investigated. 

Hypothesis testing: We now consider the null hypothesis that allelic distribu- 
tions among loci are independent. The observed variance of the number of hetero- 
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zygous gametic comparisons (case I) or loci (case 11) is denoted as si, which is 
an estimate of the population value ($). The null hypothesis is: 

Ho: U: = zhj - Eh5 . 
Assuming that H ,  is true, the sampling variance of the observed variance ( s i )  
is obtainable approximately (to the order of n - I )  using KENDALL and STUART’S 
formula (12.14) : 

var[s;l Ho is true] = {p(4) - [p(2)12}/~  . 
From results (3) and (5) above 

var[si I Ho is true] = (zhj - 7zh; 3- 12Xh;- 6xhq- 2[zhj - zh5I2}/n , (22) 

where the parametric values of the {h j )  are replaced by their estimates. This is 
also the variance in case 11, assumifig independence among the loci. Using this 
variance and assuming the sampling distribution of .st approximates normality, 
the upper 95% confidence limit for  s;c is: 

L s zhj - X’F; 4- 2 {var[s2,1 Ho is t r ~ e ] } ~ / ~  . (23) 

Thus, if the observed s; exceeds L, the null hypothesis of independence at the 
level of locus pairs is rejected. At this time, it is not clear whether the sampling 
distribution of si is normal or whether another approximation would be appro- 
priate. This is a problem worth pursuing. 

RESULTS 

Analysis of allozyme data from populations of H. spontaneum: The data for 
this analysis came from a recent survey of the allozyme variation in 28 natural 
populations of wild diploid barley (Hordeum spontaneum) from seven distinct 
regions in Israel. Single seedlings from a total of 1,179 spikes were examined. 
The isozyme techniques and single-locus diversity analysis are described by 
BROWN, ZOHARY and NEVO (1978), whereas details of the populations and 
allozyme-environment relationships are in NEVO et al. (1979). Of the 28 loci 
screened, the multilocus genotypes of 20 of these were used in the analysis: 

Pept-2, Pgi, Pgm, 6Pgd-2, To-2. The loci deleted and reasons were as follows: 
Ald, Pepc, To-2 for complete invariance; Cat, Nadhd-2, 6Pgd-1 for near invari- 
ance; Pept-2 for insufficient data and Gp for potentially complex inheritance; 
Pept-1 for insufficient data and Gp for potentially complex inheritance. The 
aim of the laboratory routine was to assay all loci on all individuals. However, 
for various technical and strategic reasons, the data are incomplete. Among the 
20 loci, the locus most deficient in scores was Est-5. Another problem with the 
data was that 43 seedlings were heterozygous at one or  more loci. However, all 
the corresponding spikes had been resampled for estimation of outcrossing rate 
(BROWN, ZOHARY and NEVO 1978). Therefore, such scores could be changed on 
editing into those of the first detected fully homozygous sib of the original hetero- 

Acph-2, -2 -3; Adh-2, -2; Est-2, -2, -4, -5; Gdh, Got-1, -2; Mdh-1, -2, Nadhd-2, 
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zygous seedling. Since outcrossing (overall average proportion was 0.01 6) and 
heterozygosity (> 96% of lines were fully homozygous) was relatively infre- 
quent except at Talpiyyot, these corrections had minimal effect on the estimates. 

The above multilocus analysis assumes that the data are complete. To over- 
come the problem of incomplete data, three computations were made: (1) Sta- 
tistics were estimated first with the raw data, where heterozygous scores were 
regarded as missing data. Every gamete in the sample was compared with itself 
and every other gamete in turn and the number of definite heterozygous loci 
per combination recorded to form the underlying distribution, f ( K )  . 

(2) Under the null hyFothesis, the statistic s; is generally biased down when 
hj < 0.5 and the data are incomplete. A correction factor can be derived from 
formulas (2) and (3) above, in which hi is replaced by n;hJ/n2, where n1 is the 
number of homozygotes scored at the jth locus, n is the total number of gametes 
and hj is the diversity at the Fh locus. This correction factor is: 

(1-nz/n2) 3 hj [l-(l+nf/nz) hi] . (24) 

The observed variance, adjusted for incomplete comparisons, is computed by 
adding this factor to the observed s2,from computation (1). 

( 3 )  An edited subset of the data was prepared in which heterozygous scores 
were converted to homozygotes, using the above sib method; plants with assays 
that lacked scores for loci known to be locally polymorphic were omitted. 

Table 1 summarizes the genetic statistics of each population. The two com- 
pletely monomorphic populations [Mt. Hermon (I), Mt. Meron (9)] are 
omitted. The number of variable loci m’, number of individuals included (n), 
equivalent to the number of independent gametes sampled, and mean genetic 
diversity per variable locus ( h )  are listed with the multilocus measures. The 
statistic p(2)  is the expected variance of the number of heterozygous loci, assum- 
ing complete independence, computed from (3), and L is the 95% upper confi- 
dence limit. This value is for comparison with 2 , the observed variance. Three 
estimates of s ; ~  are given corresponding to the three computations detailed above. 
The values of the third estimate concurred with the adjusted estimates ( s i ,  col- 
umn 2). The overall means indicate that the correction factor (24) underesti- 
mated the effect of missing data, because it assumes the null hypothesis of in- 
dependence. Finally, estimates of X (2), which are based on the adjusted values 
of s’, , X ( 3 )  and X (4) , are listed. 

All 26 polymorphic populations gave an adjusted value of s i  that exceeded 
p (2)- Statistically significant increases (s;‘ exceeding L )  were found in 1 7 popu- 
lations for original s; and 20 for adjusted values. Thus, there is evidence of 
widespread gametic phase disequilibrium in these populations. This conclusion 
was supported by the estimates of si. based on the subset of complete data 
(method 3 ) .  

The values of X (2), the measure of intensity of multilocus association, ranged 
from 0.13 to 2.79: Values in excess of 1.0 indicate that the variance in heterozy- 
gous loci due to multilocus structure is more than double that due to polymor- 
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TABLE 1 

Estimates of multilocus genetic parameters in 26 polymorphic populations of 
Hordeum spontaneum 

2 Shifon 
3 Afiq 
4 TelHay 
5 RoshPinna 
6 Gadot 
7 Tabigha 
8 Zefat 

10 Maalot 
11  Damon 
12 Shechem 
13 BarGiyyora 
14 Talpiyyot 
15 Eyzariya 
16 TelShoqet 
17 Bor Mashash 
18 Revivim 
19 Yeroham 
20 SedeBoqer 
21 BetShean 
22 Mechola 
23 Wadi Qilt 
244 Akhziv 
25 Atlit 
26 Caesarea 
27 Herzliyya 
28 Ashqelon 
Average 

6 50 0.070 
8 32 0.194 
6 50 0.153 
8 46 0.125 

11 49 0.246 
10 47 0.210 
7 50 0.135 
7 51 0.076 
7 53 0.120 
9 30 0.115 
8 53 0.141 

10 32 0.205 
10 30 0.223 
9 32 0.155 
8 52 0.063 
6 31 0.073 
7 35 0.119 
9 32 0.168 
7 41 0.142 
8 47 0.117 
9 45 0.154 
9 49 0.200 

11 49 0.193 
9 48 0.080 
7 50 0.109 
9 45 0.186 
8.3 43 0.145 

0.85 
1.68 
1.49 
1.55 
2.32 
2.23 
1.35 
1.15 
1.44 
1.46 
1.50 
2.10 
2.01 
1.65 
1.01 
0.97 
1.26 
1.78 
1.27 
1.32 
1.72 
1.99 
1.99 
1.16 
1.41 
1.82 
1.56 

1.18 0.84 
2.48' 3.61 
2.04* 2.78 
2.17* 3.76 
3.24(*) 3.01 
3.13" 3.55 
1.86(*) 1.77 
1.61* 1.90 
1.97* 2.94. 
2.20* 2.62 
2.06(*) 2.02 
3.11' 3.43 
3.03 2.61 
2.45 2.28 
1.41* 3.82 
1.46* 2.42 
1.84* 2.35 
2.65 2.20 
1.80 1.51 
1.86 1.73 
2.42* 3.21 
2.75* 4.18 
2.77* 3.32 
1.63* 1.72 
1.95* 2.22 
2.56* 2.64 
2.22 2.63 

0.97 1.10 
3.76 4.04 
2.98 3.09 
4.07 5.12 
3.55 3.90 
3.77 3.26 
2.25 2.14 
2.28 2.54 
3.03 3.77 
2.65 3.32 
2.22 2.53 
3.85 4.76 
2.59 2.85 
2.34 2.10 
3.82 3 82 
2.55 3.14 
2.42 2.15 
2.46 2.58 
1.60 1.42 
1.75 1.76 
3.42 3.52 
4.62 5.73 
3.32 3.38 
1.91 1.70 
2.22 2.22 
2.69 2.74 
2.81 3.02 

0.13 
1.23 
1 .oo. 
1.62 
0.53 
0.69 
0.67 
0.98 
1.11 
0.82 
0.48 
0.84 
0.29 
0.42 
2.79 
1.64 
0.92 
0.38 
0.27 
0.32 
0.99 
1.32 
0.67 
0.65 
0.58 
0.48 
0.80 

0.3 ~ 

34.42 
55.5$ 
9.2 

-11.1 
- 3.5 

13.4 
4.7 
1.8 
4.0 
2.9 

10.8 
-55.1 
- 2.3 

15.5 
12.6 
4.8 
0.6 

1.2 
4.4 

-33.0 
-13.8 

2.8 
1.2 

- 7.1 
2.3 

-11.8f 

-0.2 
2.5 
1.3 
2.8 
0.6 
1.1 
0.6 
2.2 
1.5 
2.0 
0.7 
0.9 
0.8 
0.5 

17.0 
8.1 
1.4 
0.2 
0.3 
0.7 
2.1 
1.8 
1.8 
1.4 
1.1 
0.8 
1.6 

Symbols: m' = number of polymorphic loci; n = number of plants sampled; h I= mean single- 
locus diversity = zhJ20; ~ ( 2 )  = expected central moment, under H,,  see (3); L = upper 95% 
confidence limit, see (23); * indicates sz (1 )  exceeds L, (*) indicates s: (2) exceeds L. 

s: = observed variance of the number of heterozygous comparisons; (1) raw data, (2) raw 
data after correction (formula 24), (3) subset of complete data. 

X(2), X(3),X(4) =measures of multilocus structure, see (formula 19). + p (3) negative. 
3 rn(3), @(3) negative. 

K 

phism. The average for these populations was 0.80. Some populations with high 
values (e.g., 24, Akhziv; 11, Damon) were from disturbed or temporary habitats. 
These samples comprised relatively few multilocus genotypes that were differen- 
tiated from one another at several loci. The Bor Mashash (1 7) sample was domi- 
nated by one multilocus genotype, with a few others in low frequency. This sug- 
gested a highly localized population, confined to the more favorable microhabitats 
in this site from the Negev desert. The populations on the coastal plain (24-28) 
showed a cline of decreasing values of X ( 2 ) ,  but generally there was no overall 
correlation with latitude. 
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Sample sizes were probably inadequate for individual estimates of X ( 3 )  and 
X(4).  Overall, there was no significant trend to positive or negative values of 
X ( 3 ) .  However, the values of X(4) were mostly positive, and correlated with 

Table 2 summarizes estimates of Spearman’s rank correlation between the 
variables s: or X(2) with the number of polymorphic loci (m’) , the mean genetic 
diversity (h ) ,  the average genetic distance or geographic distance between a 
population and all other 28 populations (NEVO et al. 1979) and the mean annual 
rainfall. Clearly, the variance in heterozygosity is correlated with the two single- 
locus measures of genetic variation whereas the standardized ratio X ( 2 )  is not. 
This result supports the standardization procedure (1 9). 

This standardization yielded a novel and interesting result, namely, a marked 
association between mean genetic distance and intensity of multilocus associa- 
tion. In part, this arises because genetic diversity ( A )  and genetic distance are 
associated ( rs  = - 0.56) .  Yet, the correlations suggest that populations with low 
diversity tend to be genetically more distinct from all other populations and to 
exhibit more intense multilocus associations. Since geographic remoteness was 
apparently unrelated to genetic distance (r8 = - 0.08), this syndrome of char- 
acters was not primarily due to isolation by distance, but might be typical for 
colonial or marginal or small populations. 

Multilocus analysis of four esterase loci in wild and cultivated barley: Perhaps 
the most extensive data on multilocus associations are those of CLEGG, ALURD 
and KAHLER (1972) for composite crosses I1 and V in barley ( H .  vulgare) . They 
used a hierarchical chi-square analysis to demonstrate the increase in multilocus 
structure with generations. However, the chi-square values are also functions of 
sample size, which fortuitously increased with increasing generations. SMOUSE 
(1974) analyzed the gametic frequencies of one of the generations (CCV, F,&), 
using a log linear model. In his analysis, most of the multiple locus disequili- 
brium was accounted for by two-locus effects. 

It seemed desirable to compare the intensity of association found in these 
CUI-tivated barley populations with the levels observed in wild barley. To do this, 

X P ) .  

TABLE 2 

Rank correlation (rs) between two measures of association and genetic and 
environmental variables 

Variance in Association 
heterozygosity intensty 

@*If) x(2)  

Loci polymorphic (m’) 0.47* -0.15 
Genetic diversity ( h )  0.50** -0.18 
Mean genetic distance+ 0.15 0.55** 
Mean geographic distance+ 0.18 0.15 
Mean annual rainfall -0.04 0.10 

*, ** Denote statistically significant correlation at the 0.05 and 0.01 levels, respectively. 
t From each population to all other populations (see NEVO et al. 1979). 
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we recomputed the statistics of Table 1 using only the data for the esterase loci. 
For the s i ,  we used the adjusted value, method (2) above. Table 3 shows the 
average value of the 26 polymorphic populations, and individual values for the 
population that showed the maximum X ( 2 )  for esterases, Bor Mashash. The 
four-locus gamete frequencies for  the composites computed from CLEGG, ALLARD 
and KAHLER (1972), were also analyzed. It is important to note that CLEGG, 
ALLARD and KAHLER had grouped the alleles into the most common and the re- 
mainder, and in so doing used only diallelic scores at each locus. Higher values 
for h, p(2) and s; would result if the polyallelic scores were used, but this would 
not necessarily increase the estimate of X (2). 

The intensity values, X ( 2 ) ,  do confirm CLEGG, ALLARD and KAHLER'S claim 
that the degree of multilocus structure has increased during the evolution of the 
composites. The last sample of both crosses show marked increases of values of 
X ( 2 )  over earlier generations. In CCII, this is accompanied by a decline in di- 
versity (h )  . Because of the large sample sizes, all the parameters are estimated 
very accurately. The values for X (  3 )  , related to the skewness of the basic dis- 
tribution, show no fixed pattern. Apart from F,, of CCII, they are apparently 
dominated by two-locus effects. 

The values of X (2) and X ( 3 )  for esterase loci in the Israeli wild barley popu- 
lations indicate a higher degree of multilocus association than in the composite 
crosses. BROWN, NEVO and ZOHARY (1977) presented a preliminary analysis of 
some of these populations based on information statistics. It was argued that 
such associations are the corollary of co-adaptation, which, if present, strengthens 
the case for the use of genetic conservation as opposed to mutagenesis as a source 
of variation for future breeding. It is recognized that historic effects or other 
scenarios of indirect selection could also account for  multilocus associations, 

TABLE 3 

Multilocus association among four esterase loci in two composite crosses of barley; 
H. wlgare (data of CLEGG, ALLARD and KAHLER 1972) compared with Hordeum spontaneum 

populations 

Hordeum uulgore 
Population Generation n a@) Lt X ( 2 )  X ( 3 )  

cc I1 

cc v 

7 1,044 0.42 0.93 
18 2,087 0.41 0.92 
41 2,868 0.22 0.68 

5 1,462 0.40 0.87 
17 2,443 0.40 0.88 
26 3,049 0.44 0.98 

Hordeum spontanewm m' 
Average Israeli populatiomn 3 43 0.30 0.61 
Highest (17) 4 52 0.16 0.49 

1.02** 1.20 0.29 1.8 

0.72** 1.66 1.44 7.0 

0.93 0.91 0.04 0.3 
0.92' 0.93 0.05 0.2 
1.03** 1.19 0.22 0.5 

0.98** 1.07 0.17 -2.4 

0.92** 0.96 0.54 2.8 
0.76** 1.27 1.58 7.6 

f , L  is the confidence limit: if it is shown with **, it is the 99% limit; otherwise, it is the 95% 
limit. 



MULTILOCUS POPULATION STRUCTUHE 535 

CONCLUSIONS 

From an initial suggestion of SVED (1968), we developed a set of indices of 
multilocus organization, and exemplified them with data of wild and cultivated 
barley. The measures are based on the observed distribution of the number of 
heterozygous loci in two randomly chosen gametes, f ( K )  . Note that unless one 
is dealing with ideal, panmictic populations, this distribution does not correspond 
with that of the number OI heterozygous loci in a sample of diploid zygotes. The 
most useful statistic from the basic empirical distribution is the variance in 
number of heterozygous loci ( s i ) .  The expected value for this variance, given 
the single-locus genetic diversities and assuming that loci are independent, 
[ ~ ( 2 ) ]  and its sampling variance are readily computed. A test of the null hy- 
pothesis of “no inflation of the variance due to association” is possible. 

The measures have a number of distinct advantage in comparison with using 
the set of D parameters, log linear models 01 information statistics. First, the 
underlying distribution, f ( K )  , is relatively simple to calculate, and the measures 
directly follow from this as observed moments. Second, they can be used with 
relatively small samples of organisms (in the order of 30 here), especially if  a 
large number of loci are scored. Third, they effectively summarize multilocus 
association to a few values for comparative studies among populations or species. 
Fourth, this mode of information reduction emphasizes one important aspect of 
multilocus organization, namely the occurrence of multilocus heterozygosity. 
This aspect has considerable biological appeal when compared with other sum- 
marizing methods, such as ZZD2,, or Z,TD:, / p i p i .  Fifth, the variance is a func- 
tion of the sum of squares of all possible two-locus gametic frequencies (see 
formula 16). Thus, this measure of “evenness” is an inverse function of two- 
locus gametic frequencies in inverse analogy with the single-locus SIMPSON di- 
versity measure. 

Of course, there are several drawbacks to these measures that should be kept 
in mind. First, such an extreme summary of data on several loci represents a 
severe loss of information. It ignores the behavior of particular allelic combina- 
tions. The study of such combinations requires methods based on D statistics, as 
recently reviewed by WEIR (1979). Yet, the study of weak associations between 
particular alleles frequently requires sample sizes beyond those normally con- 
sidered realistic for electrophoretic studies (BROWN 1975). Second, the measures 
assume each locus is of equal interest. While this assumption is commonly made 
in selectively neutral models or  models of general heterozygous advantage, it is 
not realistic biologically. For example, associations involving one particular 
locus, such as an alcohol dehydrogenase locus, could be of more biological im- 
portance than associations among a closely linked group of markers, such as 
some barley esterases. Third, formula (12) shows that unless allele frequencies 
are all equal, there can exist configurations of disequilibrium for which v; is 
lower than its value when the loci are independent. In such cases, summing over 
pairs of loci as in formula (15) may amount to combining positive and negative 
contributions. Therefore, the null hypothesis that an observed value ( s i )  equals 

2 3  r3  2.3 2.3 
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the expected value of U; under independence includes conditions when some 
multilocus organization may indeed be present. Fourth, the measure of intensity 
of multilocus structure cannot readily be made entirely independent of single- 
locus diversity or the number of loci scored. This property should be borce in 
mind when comparing, from different species, estimates that are based on radi- 
cally different single-locus data bases. 

A. H. D. BROWN is grateful for a travel grant that permitted completion of this work. We 
thank L. ALBRECHT for excellent computational assistance, and M. T. CLEGG, J. SVED, B. S. WEIR 
and a reviewer for important suggestions. 
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