Table 3.
Plant-Derived Peptides in Pharmaceutical Fields.
| Name | Origin | Bioactivities | Target Organisms | Other bioactivities | References |
|---|---|---|---|---|---|
| DmAMP1, HsAFP1, and RsAFP2 | plant | anti human pathogenic microorganisms | Aspergillus flavus, Candida albicans, Candida krusei, and Fusarium proliferatum | – | (Thevissen et al., 2007) |
| OsAFP1 | rice Oryza sativa | anti human pathogenic microorganisms | Candida albicans | – | (Ochiai et al., 2018) |
| cyclotides | sweet violet Viola odorata | anti human pathogenic microorganisms | Salmonella enterica serovar Typhimurium LT2, Escherichia coli, and Staphylococcus aureus | – | (Pranting et al., 2010; Strömstedt et al., 2017) |
| bleogens | cactaceae Pereskia bleo | anti human pathogenic microorganisms | Candida albicans and Candida tropicalis | – | (Loo et al., 2017) |
| hispidalin | Benincasa hispida | anti human pathogenic microorganisms | Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, Staphylococcus aureus, Salmonella enterica, Aspergillus flavus, Penicillium chrysogenum, Fusarium Solani, Colletotrichum gloeosporioides, and Curvularia geniculata | – | (Sharma et al., 2014) |
| cyclotides | Oldenlandia affinis | anti human pathogenic microorganisms | anti-plasmodial | anti-inflammatory | (Nworu et al., 2017) |
| iturins and fengycins | plant-derived Bacillus subtilis | anti human pathogenic microorganisms | Alcaligenes faecalis, Achromobacter xylosoxidans, Pseudomonas alcaligenes, and Pseudomonas putida,Klebsiella aerogenes, Escherichia coli, and Pseudomonas aeruginosa | inhibit planktonic and sessile growth | (de Souza Freitas et al., 2020) |
| Peoriaerin II | Millettia pachycarpa-derived Paenibacillus peoriae | anti human pathogenic microorganisms | Staphylococcus aureus, Escherichia coli, and Candida species | – | (Ngashangva et al., 2021a) |
| RsAFP2 | Raphanus sativus | anti human pathogenic microorganisms | Candida albicans | synergize with the antifungal drug caspofungin | (Vriens et al., 2016) |
| CaThi | Capsicum annuum | anti human pathogenic microorganisms | Saccharomyces cerevisiae, Candida albicans, Candida tropicalis, Escherichia coli and Pseudomonas aeruginosa | synergize with the antifungal drug fluconazole | (Taveira et al., 2014) (Taveira et al., 2017) |
| CyO2 | Viola odorata L. Violaceae | anti human pathogenic microorganisms | HIV-1-infected Cells and Infectious Viral Particles | – | (Gerlach et al., 2013) |
| alstotides | Alstonia scholaris | anti human pathogenic microorganisms | infectious bronchitis virus (IBV) and dengue virus | – | (Nguyen et al., 2015) |
| Luffin P1 | sponge gourd Luffa cylindrica | anti human pathogenic microorganisms | HIV-1 | – | (Ng et al., 2011) |
| Pep-RTYM | Acacia catechu | anti human pathogenic microorganisms | dengue virus (DENV) | – | (Panya et al., 2020) |
| leucinostatin A | Taxus baccata-derived Acremonium sp. | anticancer | prostate stromal cells (prostate cancer) | – | (Kawada et al., 2010) |
| beauvericin | plant-derived Fusarium sp. | anticancer | MDA-MB-231 (breast cancer), PC-3 M (prostate cancer), A549 (human non-small cell lung cancer), CCRF-CEM (human leukemia), HepG2 (human hepatocellular carcinoma), SH-SY5Y (human neuroblastoma), KBv200 (human oral squamous carcinoma cell), A375SM (human melanoma), etc. | immunomodulatory | (Liu et al., 2024) |
| new peptide-type 1 and 2 | Dendrobium officinale-derived Streptomyces | anticancer | Hep3B2.1–7 (liver cancer) and H1299 (Lung Cancer) | – | (Zhao et al., 2020) |
| viscotoxins | mistletoe | anticancer | rat osteosarcoma and human lymphocytes | – | (Büssing et al., 1999a; Büssing et al., 1999b; Kong et al., 2004) |
| Pyrularia thionin | American mistletoe Pyrularia pubera | anticancer | HeLa (cervical cancer), B16 (murine melanoma) | – | (Evans et al., 1989) |
| PaDef | Persea americana var. drymifolia | anticancer | breast cancer and chronic myeloid leukemia | (Guzmán-Rodríguez et al., 2016) (Jiménez-Alcántar et al., 2022) | |
| NaD1 | Tobacco | anticancer | monocytic lymphoma U937 | – | (Poon et al., 2014) |
| CyO2 | Viola odorata L. Violaceae | anticancer | breast cancer | – | (Gerlach et al., 2010) |
| colletotrichamides A-E | halophyte-derived Colletotrichum gloeosporioides JS419 | Alzheimer intervention | HT22 cells | – | (Bang et al., 2019) |
| BZR-cotoxin I and BZR-cotoxin IV | Rhazya stricta-derived Bipolaris sorokiniana LK12 | Alzheimer intervention | acetylcholinesterase, lipid peroxidation, urease | – | (Ali et al., 2016) |
| cyclic peptide | cucumber roots-derived Paecilomyces formosus LHL10 | diabetes intervention | urease and α-glucosidase | – | (Bilal et al., 2018) |
| – | Acacia nilotica-derived Aspergillus awamori | diabetes intervention | α-amylase and α-glucosidase | – | (Singh et al., 2016) (Singh and Kaur, 2016) |