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ABSTRACT 

Mathematical properties of the overdominance model with mutation and 
random genetic drift are studied by using the method of stochastic differential 
equations  IT^ and MCKEAN 1974). It is shown that overdominant selection is 
very powerful in increasing the mean heterozygosity as compared with neutral 
mutations, and if 2Ns ( N  = effective population size; s = selective disadvan- 
tage for homozygotes) is larger than 10, a very low mutation rate is sufficient 
to explain the observed level of allozyme polymorphism. The distribution of 
heterozygosity for overdominant genes is considerably different from that of 
neutral mutations, and if the ratio of selection coefficient (s) to mutation rate 
( U )  is large and the mean heterozygosity (A) is lower than 0.2, single-locus 
heterozygosity is either approximately 0 or 0.5. If h increases further, however, 
heterozygosity shows a multiple-peak distribution. Reflecting this type of dis- 
tribution, the relationship between the mean and variance of heterozygosity is 
considerably different from that for neutral genes. When s/u is large, the pro- 
portion of polymorphic loci increases approximately linearly with mean hetero- 
zygosity. The distribution of allele frequencies is also drastically different from 
that of neutral genes, and generally shows a peak at the intermediate gene 
frequency. Implications of these results on the maintenance of allozyme poly- 
morphism are discussed. 

VERDOMINANT selection is a powerful mechanism for maintaining ge- 
netic polymorphism in populations. Although there are only a few examples 

of authentic overdominant selection (LEWONTIN 1974; NEI 1975), a number of 
authors (e.g. ,  SVED, REED and BODMER 1967; FRANKLIN and LEWONTIN 1970; 
SINGH and ZOUROS 1980) have suggested that it is the major factor for maintain- 
ing genetic variability in populations at both the phenotypic and molecular 
levels. Thus, it is important to know the population dynamics of overdominant 
genes. The theoretical properties of overdominant genes in an infinite popula- 
tion have been studied extensively (FISHER 1922; KIMURA 1956; LEWONTIN, 
GINZBURG and TUWAPURKAR 1978; and others). However, all natural popula- 
tions are finite, and the behavior of overdominant genes in finite populations is 
quite different from that in infinite populations (ROBERTSON 1962). Even over- 
dominant alleles will eventually be fixed in or lost from the population by ran- 
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dom genetic drift. On the other hand, new alleles are always produced by muta- 
tion and spread through the population. Thus, the level of genetic variability in 
a population will be determined by the balance of the effect of genetic drift, 
selection and mutation. Recently, LEWONTIN, GINZBURG and TULTAPURKAR 
(1  978) emphasized the difficulty of maintaining many polymorphic alleles 
under overdominant selection in an infinite population, but they did not consider 
mutation. In the presence of mutation, a large number of alleles may be main- 
tained even in a finite population (KIMURA and CROW 1964; WATTERSON 1977; 
LI 1978). 

The study of the allele frequency distribution in finite populations for general 
overdominant selection with multiple alleles was initiated by WRIGHT (1949). 
KIMURA and CROW (1964) studied the effective number of alleles that can be 
maintained in finite populations, presenting an approximate formula for this 
number. A slightly different approximate formula for this number was also 
developed by EWENS (1964). Recently. WATTERSON (1977) and LI (1978) con- 
ducted a rigorous mathematical study on this subject and showed that KIMURG 
and CROW’S and EWEN’S formulae are not accurate under certain conditions. Yet, 
they did not produce any general formula for the effective number of alleles or 
expected heterozygosity. More recently, in conjunction to their study of the 
number of sex-determining alleles that can be maintained in a finite bee popula- 
tion, YOKOYAMA and NEI (1979) presented a general formula for  the expected 
heterozygosity for the WRIGHT model of overdominant selection when popula- 
tion size is larger than a certain level. When population size is small, however, 
their formula does not work well. 

I t  seems very difficult to derive a general analytical formula for the expected 
heterozygosity for overdominant selection in finite populations. However. if we 
use 1 ~ 6 ’ ~  method of stochastic differential equations, as adapted by MARUYAMA 
(1 980) to population genetics problems, various properties of overdominant se- 
lection can be studied numerically. In this paper, we shall present some of our 
studies in this direction. The problems we have studied are (1) the mean and 
variance of heterozygosity as a function of population size, mutation rate and 
selection intensity, (2) the distribution of heterozygosity, (3) the relationship 
between the mean heterozygosity and proportion of polymorphic loci, (4) the 
allele frequency distribution (spectrum), and ( 5 )  the rate of gene substitution. 
Unlike previous authors, we have considered asymmetric overdominance as well 
as symmetric overdominance. All of these properties are important in testing 
the applicability of overdominant selection in explaining the pattern of protein 
polymorphism, which has recently been studied in many different organisms. 

MATHEMATICAL MODELS AND METHODS 

Following KIMURA and CROW (1964) , we assume that every new mutation is 
different from the extant alleles (infinite-allele model) and that the fitness of 
heterozygotes is the same for all pairs of alleles. We designate the ith allele by Ai 
and the fitnesses of genotypes AiAj and AiAi by 1 and 1 - si, respectively. Pre- 
vious authors have assumed that si is the same for  all homozygotes. In  our ap- 
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proach, this assumption is not necessary, and we consider two cases, i.e., where 
s i  is the same for all i (symmetric selection) , and where si varies with i (asym- 
metric selection). In the latter case, we assume that 2Nsi is given by (2NS + 
4t)/5, where N is the effective population size and t is a random variable follow- 
ing the exponential distribution f(s)  = (2NS)-1 exp(-s/2NS), in which S is the 
mean of si. Note that when s varies randomly with Ai, various types of asym- 
metric selection are generated. In the first several sections of this paper, we shall 
consider the case of symmetric selection; then the effect of asymmetric selection 
will be examined. 

Consider a random-mating population of effective size N .  We assume that se- 
lection and mutation occur deterministically and that, after selection and mu- 
tation, 2N gametes are randomly chosen for the next generation. As indicated 
earlier, we shall use 1 ~ 6 ’ ~  method of stochastic differential equations to study the 
dynamics of gene frequency changes. Consider the case where n + 1 different 
alleles (A,,A,, . . . ,An) are present in the population, and let # I ( ~ ; X ~ , Z ~ ,  . . . , xn ;  
y1,y2, . . . ,yn) be the transition probability density that the frequencies of alleles 
A,,A,, . . . ,An change from xl,xz,  . . . ,xn to y1,y2, . . . ,yn, respectively, in time 
interval t .  Then, the density + satisfies the following Kolmogorov backward equa- 
tion 

n 
where S i i  = 1, 6 i j  = 0 if i#j, J = ,z x: and U is the mutation rate per generation. 

The time denoted by t is measured in units of 2N generations. It is easy to show 
that every solution of equation (1) goes to 0 as t becomes infinitely large, be- 
cause every allele eventually disappears from the population by genetic drift 
and mutation. Equation (1) does not have any terms for newly arisen mutations. 
They will be considered when we discuss 1 ~ 6 ’ ~  equations. 

According to the theory of stochastic differential equations, the process goy 
erned by (1) can be described by a system of equations of the following type 
( 1 ~ 6  and MCKEAN 1974, p. 303). Let x i ( t )  be the frequency of allele Ai at time t 
and Bj be an independent Brownian motion variable. The change in xi(t) in a 
short time interval dt is then given by 

%=a 2. 

n 

d z i ( t )  = ,: eijdBj +BNxi( t ) { - -v f s[J- -s i ( t ) I /  
3 =1 

(1 -SI) }d t  for i = l,2,. . . ,n , (2) 
n 

2 =n 
where J = .E zi ( t )  and [eij] is a positive definite square root of the drift matrix 
[ X i  ( S i j  - S j )  1. 

Equation (2) is a commonly used form oi representing the diffusion process 
given by (1 ) , but there are many other ways of representing it ( WATANABE 
1971). In this study, we shall use ITOH’S (1979) form, in which the square root 
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matrix [ezj] is not involved. Furthermore, in actual computation, we approxi- 
mate ( 2 )  by the corresponding difference equation. The difference equation in 
ITOH’S (1979) form is 

n 
AXi(t) =I o(i,j> f i B , j ( A t )  

i’.j.; 
3- 2Nx, ( t )  { - U  f SC.7 - Z; ( t )  ]/( 1 - SI) }At ( 3 )  

for i = 1,2, . . . ,n, where a ( i , j )  = 1 if i < j ,  u(i,j) = - 1 if i > j ,  and BL3(At )  for 
i < i is an  independent random variable following the normal distribution with 
mean 0 and variance At (white noise) ; whereas, Bji (At )  = B,j (A t ) .  

In ( 3 )  , no consideration has been made about the mutant alleles, but they can 
be introduced in the following way. During the time interval At, 2Nu X 2NAt = 
4NzuAt new mutations are introduced on the average with the initial frequency 
of 1/2N. Many of the mutant alleles will be lost in the first few generations due 
to genetic drift, but some will survive and the frequency will reach a specified 
value, E ,  which is still small, but larger than 1/2N. Therefore, if we consider only 
those mutations whose frequency reaches E, the expected number of mutations 
introduced during the time interval of At is approximately 4N2vAt X ( 1 / 2 N )  / 
E = 2 N v A t / ~ ,  since the gene frequency change in early generations is determined 
almost exclusively by genetic drift. Thus, we assume that on the average 2NuAt /~  
mutations are introduced during time interval At with an initial frequency of E .  

Namely, 

x ,+ , ( t+At )  = E ,  i=1 ,2 ,  ... ,k , (4) 
where k is the number of new mutations introduced and follows the Poisson dis- 
tribution with mean 2 N v A t / ~ .  In  practice, 2 N v A t / ~  was much smaller than 1 in 
most of our simulations. In  the present case, we used either E = 0.01 or E = 0.005. 
It should be noted that, in our simulation, once new mutations are introduced, 
their frequencies in subsequent generations are followed even if they are smaller 
than E .  Alleles are considered to have been lost from the population only when 
z i ( t )  becomes 0 or negative. In  the above discussion we have neglected x o ( t ) ,  
but this can be obtained by 1 - x1 ( t )  - x2 ( t )  . . . - xn+k( t )  . 

It  is now clear that the change of xi ( t )  in a population (sample path) can be 
followed by repeatedly applying ( 3 )  and ( 4 ) .  Since B;j(At) can easily be gen- 
erated by computer, this method greatly facilitates the computation of .z, ( t )  . The 
usual Monte Carlo simulation requires a large amount of computer time when 
N is large, but in the present method, the computer time largely depends on the 
value of At and, thus, it is not affected very much by population size. Of course, 
the accuracy of approximation is higher when At and E are small. It is known 
that the sample paths obtained by simulating (3) converge to the sample paths 
of the diffusion process governed by ( 1 )  as At goes to 0 in the sense of 1 ~ 6 ’ ~  (not 
STRATONOVICH’S) integral (ARNOLD 1974). In  practice, it is important to make 
At smaller than E .  We used At = 0.1/(2Ns)  if this was smaller than 0.001; other- 
wise we used At = 0.001. 
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If we use (3) and (4), we can study various properties of both equilibrium 
and nonequilibrium populations, but in the present paper we shall be mainly 
concerned with the equilibrium population in which the effects of mutation, 
selection and random genetic drift are balanced. The equilibrium population 
was generated by computing si(t) repeatedly for the period t = l /(Nv) or 
2N/(Nu) = 2/21 generations, starting from a monomorphic population. We be- 
lieve that this is sufficient, since the rate of approach to the equilibrium dis- 
tribution of allele frequencies for the case of s = 0 is 2v + 1/(2N) per genera- 
tion (NEI and LI 1976). After the equilibrium population was established, i.e., 
after t = 2/(2N21), we observed allele frequencies at a time interval of 0.1. With 
this time interval, two consecutive observations are not expected to be completely 
independent, but nevertheless provide unbiased estimates of parameters we need 
if a sufficiently large number of observations are made. In each case, we con- 
tinued our simulation (and observation) until t reached 1000 + 1/(N21) or more. 
Thus, the total number of observations was 10,000 or  more. Once these allele 
frequency data were obtained, the distribution of allele frequencies, the mean 
and variance of heterozygosity, etc., were computed. 

Since we approximated the diffusion process by (3) and (4), we checked the 
accuracy of our computation by examining the mean heterozygosity and the 
allele frequency distribution (spectrum). When there is no selection, the mean 
heterozygosity is given by h = 4Nv/(l + 4Nv) (KIMURA and CROW 1964). 
Furthermore, the mean heterozygosity for a small value of 2Ns in the case of 
overdominant selection can be studied analytically by the method of WATTERSON 
(1977) and LI (1978). The theoretical means of heterozygosities obtained by 
these methods are presented in Table 1, together with the simulation results. It 
is clear that the agreement between theory and simulation is satisfactory in all 
cases. Figure 1 shows the theoretical allele frequency distribution for neutral 
mutations, together with the results from simulations. The theoretical allele 
frequency distribution was obtained by KIMURA and CROW’S (1964) formula 

TABLE 1 

Mean heterozygosities for testing the accuracy of the computer simulation used 

S N U  2Ns 
Mean heterozygosity 

Theoretical Simulation 

0.02 
0.1 
0.2 
0.5 
0.004 
0.012 
0.026 
0.060 

0 
0 
0 
0 
2 
6 

13 
30 

0.0196 
0.0909 
0.1667 
0.3333 
0.0080 
0.0970 
0.4548 
0.6265 

0.0195 
0.0897 
0.1658 
0.3316 
0.0079 
0.0964 
0.4501 
0.6360 

The time duration (t) for simulation was 2040. The theoretical values for neutral alleles were 
obtained by h .= 4Nu/(l + 4Nu) and those for overdominant alleles were obtained by LI’S 
(1978) method. 
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+(z) = 4Nuz-l (1 - z ) 4 N v - 1 .  The agreement between theory and simulation is 
again satisfactory except for the values for small x’s (z < E ) ,  which tend to be 
smaller than the expected values. Note that there is no reason to believe that se- 
lection makes the agreement worse. Thus, this method of simulation appears to 
give a quite accurate result for studying the population parameters in which we 
are interested. Since we used E = 0.01 or 0.005, our results for the number of rare 
alleles are not very accurate, but they are not of concern in this paper. Note that 
rare alleles make little contribution to either heterozygosity or the proportion 
of polymorphic loci. 

HETEROZYGOSITY 

Mean: The mean heterozygosity ( h )  is a function of mutation rate ( U ) ,  se- 
lection coefficient (s) and effective population size ( N )  . However, since we are 
using the diffusion approximation, there are only two independent parameters, 
i.e., N u  and Ns. The relationship among h, N u  and Ns that we obtained is given 

11 

1c 

&XIS 

E 

4 

2 

C 

FIGURE 1.-Theoretical allele frequency distributions [+(x) = 4 N u ( l  - z)4sc-1 rl] and 
the distributions obtained by computer simulation for neutral allelcs. A and refer to the 
cases of 4Nu = 0.08 and 4Nu = 4, respectively. The left and right scales of the ordnate refer to 
the distributions for 4Nu = 0.08 and 4Nu =4, respectively. 
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N v  

FIGURE 2.-Relationships between N u  and mean heterozygosity ( E )  for overdominant alleles. 
When s and U remain constant, each curve represents the relationship between N and h. The 
curve for s = 0 was obtained by h = 4 N v / ( l $ -  4 N u ) .  

in Figure 2. It is clear that the average heterozygosity under overdominant se- 
lection is always higher than that for neutral mutations when 4Nv remains the 
same. For a given mutation rate, the average heterozygosity for neutral muta- 
tions increases relatively slowly with increasing N .  In the presence of over- 
dominant selection, the average heterozygosity increases rapidly, particularly 
when the selection intensity (s) is high. However, once the heterozygosity value 
reaches about 0.8, the rate of increase with increasing N becomes slow and is 
almost independent of s. The reason for this seems to be that when the average 
heterozygosity is high, most individuals are equally fit, and thus a further in- 
crease of average heterozygosity is attained only by increasing the Nv value. In 
other words, if most individuals are heterozygous, overdominance provides no 
advantage. 

Figure 2 shows that overdominant selection is a powerful mechanism for main- 
taining polymorphism as compared with neutral mutations. Thus, if N = lo4 
and U = 0.04. 
However, if there is slight overdominant selection with s = 0.001, h becomes 
0.55 with the same population size and the same mutation rate. If s = 0.01, h 
becomes 0.84. 

This problem can be looked at slightly differently. We note that, when a 
reasonably large number of loci is examined, the average heterozygosity for al- 
lozymes is 0 - 0.3 in most natural populations (FUERST, CHAKRABORTY and NEI 
1977). We also note that the effective population size ( N )  is at least lo4 in 
many species. Thus, under the neutral mutation hypothesis, a level of h = 0.0909 
is maintained if N = 25,000 and U = lob6 (4Nv = 0.1). On the other hand, i f  
there is slight overdominance with s = and N = 25,000 (2Ns = 5), then a 
mutation rate of about 1.75 X lo-? (4Nv = 0.0175) is sufficient to maintain the 

the expected heterozygosity for neutral alleles is 0.04/1.04 
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same level of heterozygosity (Table 2).  If s = 5 X (2Ns = 25), the mutation 
rate required is only about 1.7 x 10-l1 (4Nv = 1.7 x lo+). This indicates that 
if we invoke overdominant selection for explaining the observed level of hetero- 
zygosity for  protein loci, we must assume a very low mutation rate. In  other 
words, once an overdominant allele is established in the population, it will stay 
there for a long time. 

Recent advances in molecular biology make it possible to study genetic varia- 
bility at the nucleotide level. At the nucleotide level, the average heterozygosity 
per locus is expected to be high. When h is high, overdominant selection is less 
powerful than when it is low, as mentioned above. Table 2 shows that neutral 
mutations produce an average heterozygosity of 0.8 when 4Nu = 4; whereas, over- 
dominant mutations with 2Ns = 25 require 4Nu = 1.3 to maintain the same level 
of heterozygosity. Namely, the mutation rate required for overdominant selec- 
tion is about one-third of that for neutral mutations. This requirement is much 
larger than the requirement (1.7 x 

Variance: NEI and his co-workers (NEI 1975; NEI, FUERST and CHAKRABORTY 
1976; FUERST, CHAKRABORTY and NEI 1977) and YAMAZAKI (1977) have used 
the relationship between the mean ( h )  and variance [ V ( h ) ]  of heterozygosity 
among loci for testing the null hypothesis of neutral mutations. The variance of 
heterozygosity for the case of neutral alleles can be computed by the formula 
developed by WATTERSON (1974) and STEWART (1976). In  the absence of mathe- 
matical models for alternative hypotheses, however, they could not determine 
the power of their test. We have therefore examined this relationship for the 
overdominance model. 

The results obtained are given in Figure 3. It is clear that the relationship 
depends on the ratio of s/u. When this ratio is 10, the variance is similar to that 
of neutral genes if h is smaller than 0.2, but substantially lower than the latter 
if h is large. The difference between neutral genes and overdominant genes 
becomes conspicuous as the s/v ratio increases. Although the results are not pre- 

for the case of h = 0.0909. 

TABLE 2 

Population size (N), selection intensity ( s )  and mutation rate (v) that are 
required for maintaining a given level of mean heterozygosity (h) 

h 2lVS 4Nu h 2Ns 4Nv 

0.0476 
0.04.50 
0.0457 

0.0909 
0.0930 
0.0926 

0.3333 
0.3377 
0.3341 

0 
5 

25 

0 
5 

25 

0 
5 

25 

0.050 
0.0075 
7.5 x 10-7 

0.100 
0.01 75 
1.7 x 10-6 

0.500 
0.150 
1.65 x l e 5  

0.500 
0.480 
0.485 
0.518 

0.8 
0.802 
0.796 
0.794 
0.808 
0.802 

0 
5 

25 
50 

0 
5 

25 
50 

100 
200 

1 .o 
0.5 
0.002 
1.7 x 10-4 

4.0 
3.2 
1.3 
0.5 
0.2 
0.01 
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FIGURE 3.-Relationships between the mean (h)  and variance (u2) of heterozygosity. (a) 
s = 0; (b) s/u= 10; (c) s/u = 100; (d) S / U  = 1000; ( e )  S / U  = 104; (f) s / u  = 105.  The curve 
for s'= 0 was obtained by the WATTERSON~TEWART formula. The curves for s > 0 were obtained 
by computer simulation. The number of observations of U; was so large that the deviations of 
the observed values from the smooth curves were very small. 

h 

sented, the relationship, when the s/u ratio is larger than lo5, is virtually iden- 
tical with that for s/v = I O 5 .  We first note that in all cases V ( h )  increases as h 
increases, reaches a maximum and then starts to decline. When s/u is large, 
however, there are more than one local maxima. Furthermore, as the s/u ratio 
increases, V ( h )  reaches the first maximum at a lower value of h than that for 
neutral alleles, and the maximum value of V (h )  is considerably larger than that 
for neutral genes. When s/u is 1000 or larger, the first maximum point is lo- 
cated near h = 0.25, and as h increases further, V ( h )  declines rapidly and be- 
comes close to 0 around h = 0.5. Namely, in the range of h = 0 - 0.5, V ( h )  
follows a curve similar to a parabola. This is apparently due to the fact that at 
individual loci, heterozygosity assumes practically two different values, i.e., 0 
and 0.5 when s/u is large, as will be seen later. At any rate, it is clear from 
Figure 3 that the relationship between h and V ( h )  is affected considerably by 
overdominant selection, and thus it can be used to distinguish overdominant se- 
lection from neutral mutations, if enough data are available. 

Another interesting finding from our simulation is that the relationship be- 
tween h and V ( h )  is close to the curves given in Figure 3, even if h happens to 
deviate considerably from its true population value. For example, suppose that 
a particular set of data gives a mean heterozygosity of 0.2 because of the rela- 
tively small number of loci examined, but the population mean heterozygosity 
is 0.25. In this case, the variance of heterozygosity is close to that corresponding 
to F, = 0.2 rather than to that corresponding to h = 0.25. This indicates that even 
if the sample size is relatively small, the curves for overdominant genes in Figure 
3 can be used for testing alternative hypotheses for maintenance of genetic 
polymorphism. 



450 T. MARUYAMA A N D  M. NE1 

Distribution of heterozygosity: The distribution of single-locus heterozygosity 
for neutral genes has been studied numerically by EWENS and GILLESPIE (1974) 
and FUERST, CHAKRABORTY and NEI (1977). In the case of overdominant selec- 
tion, the distribution is determined by N u  and Ns, but when s/u is larger than 
1000, the distribution for a given value of h is virtually the same for wide ranges 
of N u  and Ns.  Therefore, we shall again be concerned with the case of s/u = 
1000. 

The distributions of heterozygosity for four different values of h are given in 
Figure 4. It is clear that, when h is 0.0755 (a), there are two sharp peaks at 
h = 0 and h = 0.5, and the frequencies between these two values and those above 
h = 0.5 are very small. This indicates that a locus is virtually either mono- 
morphic or polymorphic, and, if it is polymorphic, the heterozygosity is approxi- 
mately 0.5. The peak at h = 0 is much higher than that at h = 0.5. Essentially 

50 

40 

30 

2c 

1c 

b 

.2 .4 .6 .8 1.0 
h 

FIGURE 4.-Distributions of heterozygosity for various levels of h. In the computation of these 
distributions, s/u = 1000 was assumed. (a) 2Ns'= 10, A = 0.076; (b) 2Ns = 12, h = 0.189; 
(c) 2Ns = 20, h = 0.488; (d) 2Ns I 80, h = 0.729. 
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the same pattern was obtained for the cases of h < 0.0755, though the peak at 
h = 0.5 was lower. When h is 0.1889 (b), there are still peaks at h = 0 and 
h = 0.5, but the peak at h = 0.5 is now much higher than that for h = 0.0755. 
The frequency of h > 0.5 is still negligibly small. In the case of h = 0.4880 (c) , 
the peak at h = 0.5 becomes much higher than that at h = 0, and a third peak 
appears around 2/3. If h further increases, the height of this thrid peak rises, 
and fourth and fifth peaks appear around h = 3/4 and h = 4/5, respectively; 
whereas, the peak at h= 0 gradually disappears. In the case of h ,= 0.7291 (d), 
the fourth peak is highest, and the first and second peaks are invisible. These 
peaks or spikes apparently occur for  a geometric reason and coincide with the 
peaks conjectured by STEWART (1976) for neutral genes. (The location of the 
fifth peak is somewhat deviated from h = 4/5.) 

It should be noted that the pattern of distribution of heterozygosity for neutral 
alleles is considerably different from that for overdominant alleles, though the 
locations of the peaks seem to be the same or similar. This can be seen by com- 
paring the present results with those obtained by both EWENS and GILLESPIE 
(1974) and FUERST, CHAKRABORTY and NEI (1977) for the case of neutral al- 
leles. When h is small, the distribution for neutral alleles is essentially L-shaped, 
with a small peak at h = 0.5. When h is high, there are apparently a number of 
peaks, but the frequencies between peaks are always substantial. Clearly, this 
difference in the distribution pattern can be used for discriminating the two al- 
ternative hypotheses in data analysis. 

Relationship between average heterozygosity and the proportion of polymor- 
phic loci: We define a locus as polymorphic if the frequency of the most common 
allele is equal to or less than 1 - g, where g is a small quantity. In the present 
study we used q = 0.01 and 0.05. With this definition, the expected proportion 
of polymorphic loci for neutral alleles is given by 1 - q4"' (KIMURA 1971); 
whereas, the expected heterozygosity is 4Nv/( 1 + LENU), as mentioned earlier. 
Therefore, the relationship between these quantities can be obtained analytically. 
Recently, CHAKRABORTY and YOKOYAMA (1978) studied this relationship for 
overdominant alleles and showed that the difference between the neutral and 
overdominant models is small. However, they used selection coefficients of the 
order of the mutation rate. Actually, if we use a selection coefficient that is much 
larger than the mutation rate, the relationship for overdominant alleles is sig- 
nificantly different from that for neutral alleles. 

Our results on this relationship are presented in Figure 5. This result was 
obtained by using 4Nv = 0.001 - 0.1 and 2Ns = 0.01 - 100, keeping s /v  equal 
to 1000. The g value used was 0.01. Figure 5 indicates that the proportion of 
polymorphic loci (P) increases almost linearly with increasing mean heterozy- 
gosity ( h ) .  The relationship is roughly given by P = 2.13 h ( E  I 0.47). This 
linear relationship is caused by the fact that when E I 0.5, heterozygosity as- 
sumes a value of either 0 or 0.5, roughly speaking. At any rate, it is clear from 
this figure that the relationship for overdominant alleles is considerably different 
from that for neutral alleles if the selection intensity is sufficiently large. For 
example, when the mean heterozygosity is 0.2, the expected proportion of poly- 
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FIGURE 5.-Relationship between mean heterozygosity (h) and probability of polynorphic loci 
(P) when the criterion of q = 0.01 is used. The solid line represents the relationship for neutral 
alleles; whereas, the dots give the relationship for overdominant alleles with S/L: = 1000. The 
relationship for overdominant alleles is given approximately by P = 2.13h (h  I 0.47). In the 
case of overdominant alleles, essentially the same relationship holds when the criterion of q = 
0.05 is used. 

morphic loci is 0.43 for overdominant alleles, but 0.68 for neutral alleles. Essen- 
tially the same result was obtained when q = 0.05 was used. 

DISTRIBUTION O F  ALLELE FREQUENCIES 

The distribution of allele frequencies or frequency spectrum for neutral alleles 
is given by @(z) = 4Nvz-l (1 - z)4Nv-1 (KIMURA and CROW 1964). Lr (1978) 
studied the allele frequency distribution for relatively small values of 2Ns 
(2Ns = I O )  for the case of overdominant selection. He showed that when the 
4Nv value is much smaller than 1, the distribution has a distorted W shape. 
However, he could not study the case of large 2Ns because of technical diffi- 
culties. We have therefore studied the allele frequency distributions for various 
values of 2Ns and 4Nu. Some examples are presented in Figure 6. First, we note 
that the distribution for neutral genes is always U-shaped when 4Nc < 1. Com- 
pared with this case, the distribution for overdominant alleles has a peak at an 
intermediate gene frequency even if 4Nu is very small, and the peak becomes 
higher as 2Ns increases. The location of the peak is around x = 0.5 when 2Ns 
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FIGURE 6.--Allele frequency distributions (spectra) for overdominant alleles. (a) 4Nu = 

20, h = 0.488; (d) 4Nu = 0.008, 2Ns = 40, h = 0.627; (e) 4Nu = 0.016, 2Ns= 80, h = 0.729. 
0.0016, ~ N s  = 8, h = 0.051; (b) 4Nu = 0.0024, 2Ns = 12, h = 0.189; ( c )  4Nv = 0.004, ~ N s  = 

is small, but moves down as 2Ns increases, because the number of alleles main- 
tained in a population increases. The pattern of the distribution also depends on 
the value of 4Nv.  If this value increases, the value of (z) increases, particularly 
around the peak. When 4Nu and 2Ns are sufficiently large so that h is larger 
than 0.75, the distribution is approximately given by YOKOYAMA and NEI’S 
(1979) formula. 

RATE O F  GENE SUBSTITUTION 

As emphasized by KIMURA and OHTA (1971), protein polymorphism is a 
phase of molecular evolution. Any reasonable theory of molecular evolution 
must be able to explain simultaneously both the level of polymorphism and the 
rate of gene substitution. In the neutral mutation theory, the rate of gene sub- 
stitution is equal to the mutation rate. In the case of symmetric overdominant 
selection, the probability of fixation of a mutant gene when there are only two 
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alleles is higher than that of neutral mutations (NEI and ROYCHOUDHURY 1973), 
but no studies have been done about the rate of gene substitution when new 
mutations are continuously introduced. 

We studied the rate of gene substitution for overdominant alleles in the follow- 
ing way. We assumed that a gene consists of a large number of codons, that any 
mutation produces a new allele and that no intracistronic recombination occurs. 
We labeled the original allele 1. The first mutation from this allele was desig- 
nated 11, the second mutation 12, and so forth. When new mutations occur from 
allele 11, they were designated 111, 112, 113, etc. in the order of occurrence. 
Similarly, the mutations from 12 were designated 121, 122, 123, etc. This label- 
ing was continued until a particular mutational codon was fixed in the popula- 
tion. This codon fixation was recognized by determining whether or not the 
number in the second position of allele designation was the same for all genes 
in the population. For example, when all the genes had number 2 in the second 
position, codon 2 was regarded as having been fixed. As soon as this fixation oc- 
curred, the number in the first position (i.e., 1 in this case) was eliminated to 
keep the length of the allele designations from becoming too long. This process 
was followed for a period of t = 535 - 200,000, depending on the rate of gene 
substitution, and the total number of gene fixations was recorded. 

The results obtained are presented in Table 3, together with the average 
heterozygosities obtained. In this table, the rate of gene substitution is expressed 
per 2N generations, rather than per generation. It is clear that the rate for 
neutral mutations (2Ns = 0) obtained by simulation is approximately equal to 
the expected rate of 2Nv. Furthermore, if 4Nu remains the same, overdominant 
selection with a small value of 2Ns accelerates gene substitution, as expected 

TABLE 3 

Rate of gene substitutions (a) for overdominant mutations compared with those 
of neutral alleles (2Ns = 0 )  

Observed mean 
heterwwity - N,,. Of gene Substitution h obtained 

- 
4.vu 2 N S  h substitutions rate (a) from a 

0.02 
0.04 
0.08 
0.20 
0.0002 
0.0002 
0.0002 
0.002 
0.002 
0.002 
0.02 
0.02 
0.02 

0 
0 
0 
0 
1 

10 
100 

1 
10 

100 
1 

10 
100 

0.0195 
0.0368 
0.0743 
0.1658 
0.00030 
0.0102 
0.6704 
0.0031 
0.0755 
0.7193 
0.0301 
0.2711 
0.7489 

17 
33 
82 

154 
35 
39 
6 

31 
33 
6 

32 
128 
15 

0.0094 
0.0183 
O.OM6 
0.0962 
0.00018 
0.00081 
0.00165 
0.0015 
0.00685 
0.00429 
0.0154 
0.0634 
0.0355 

0.0185 
0.0353 
0.0751 
0.1614 
0.00036 
0.0016 
0.0033 
0.0030 
0.0135 
0.0085 
0.0298 
0.1125 
0.0663 

The rate is measured in units of 2N generations and is equal to 2Nv if all mutants are neutral. 
The last column gives the estimate of mean heterozygosity obtained from a under the assumption 
of neutral mutations. 
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from NEI and ROYCHOUDHURY’S (1973) study. This can be seen by examining 
the case of 4Nv = 0.02 in Table 3. However, a large value of 2Ns does not neces- 
sarily give a higher rate of substitution than does a small value of 2Ns. Indeed, 
the rate of gene substitution for a given value of 4Nu first increases with in- 
creasing 2Ns, but then declines. This is apparently due to the fact that, as the 
average heterozygosity increases, the initial advantage of a new mutant allele 
declines. 

The effect of overdominant selection on the rate of gene substitution is, how- 
ever, much smaller than that on average heterozygosity. In general, overdomi- 
nant selection increases average heterozygosity more drastically than the rate 
of gene substitution. This can be seen by computing the average heterozygosity 
from the observed rate of gene substitution under the assumption of neutral 
genes. Namely, equating the rate of gene substitution to 2Nv, we can compute 
the estimated average heterozygosity by 4Nv/ (  1 + 4Nv) under the assumption 
of neutral genes. This value is given in the last column of Table 3. I t  is clear 
that when 2Ns = 1, this value is roughly the same as the actual value, because 
in this case the mutant alleles behave just like neutral alleles. However, when 
2Ns is large, the estimated average heterozygosity is substantially smaller than 
the actual value. In other words, for a given rate of gene substitution, over- 
dominant selection produces a higher level of heterozygosity than that for neu- 
tral genes. We shall later discuss the implication of this finding for the main- 
tenance of protein polymorphism. 

EFFECT OF ASYMMETRIC SELECTION 

To see the effect of asymmetric selection, we studied the mean and variance 
of heterozygosity and the rate of gene substitution for the cases of 2NS = 1, 10 
and 100, where S is the mean of si. Every time a new mutation was introduced, 
the fitness of the homozygote for the allele was determined by using a random 
number that followed the exponential distribution mentioned earlier. The mean 
heterozygosities and the rates of gene substitutions obtained are presented in 
Table 4. In the case of 2Ni = 1, the gene frequency change is dictated by genetic 
drift, so that the mean heterozygosity and rate of gene substitution are both 
similar to those for the case of constant selection with 2Ns = 1 , which are in turn 
similar to those for neutral genes. However, when 2N6 is large, the mean hetero- 
zygosity for asymmetric selection tends to be smaller than that for symmetric 
selection. This is, of course, expected, since asymmetric selection is less efficient 
in maintaining genetic variation. Compared with the case of neutral genes, how- 
ever, it is still a very powerful mechanism for maintaining polymorphism. Just 
as in the case of symmetric selection, the rate of gene substitution for asym- 
metric selection first increases with increasing 2NS, but then declines. This 
pattern can be explained by the same principle as that for comtant selection, 

The comparison of the variances of heterozygosities for symmetric and asym- 
metric selection is not simple, since the variance is highly dependent on the 
mean (Figure 3) and the mean is not the same for the two cases even if S = s. 
However, our results have shown that the relationship between the mean and 
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TABLE 4 

Mean heterozygosities (h) and the rate of gene substitution (a) for  the 
asymmetric overdominant selection 

- 
4" ZN; h No. of gene substitutions (Y 

0.0002 
0.0002 
0.0002 
0.002 
0.002 
0.002 
0.02 
0.02 
0.02 

1 
10 

100 
1 

10 
100 

1 
10 

100 

0.00046 
0.00350 
0.6223 
0.00279 
0.0412 
0.6572 
0.0280 
0.2192 
0.6834 

9 
50 
15 
5 

63 
84 
29 

108 
24 

0.00019 
0.000963 
0.00115 
0.00104 
0.01255 
0.00514 
0.0143 
0.0535 
0.0462 

~~ ~ ~ ~~~~ 

Selection coefficient si for homozygote AiAi is assumed to be exponentially distributed. The 
value< of h and a for the case of constants are given in Table 3. 

variance is virtually identical with that for symmetric selection, as long as s/u 
is large. 

DISCUSSION 

The results obtained in this paper are directly applicable for examining the 
role of overdominant selection in the maintenance of allozyme polymorphisms. 
As mentioned earlier, a number of authors used the relationship between the 
mean and variance of single-locus heterozygosity and showed that it is roughly 
in agreement with the expected relationship from the neutral mutation hy- 
pothesis. The present study has shown that the expected relationship under over- 
dominant selection is considerably different from that predicted by the neutral 
theory, particularly when the mean is large. Unfortunately, however, most of 
the estimates of average heterozygosities obtained from natural populations are 
below 0.2, and in this range the difference between the neutral and overdominant 
expectations is small. Therefore, this method is not very useful for  distinguishing 
between the two hypotheses. 

A more useful method is to examine the distribution of single-locus heterozy- 
gosity, the relationship between the proportion of polymorphic loci and average 
heterozygosity and the allele frequency distribution. FUERST, CHAKRABORTY 
and NEI (1977) studied the distributions of heterozygosity for 68 different 
species (or subspecies) and showed that in none of the species examined was the 
distribution significantly different from the neutral expectation. Their observed 
distributions are, however, considerably different from those in Figure 4 in this 
paper. FUERST, CHAKRABORTY and NEI (1977) also examined the empirical re- 
lationship between the proportion of polymorphic loci and average heterozy- 
gosity in many different species. Comparison of their Figures 8 and 9 with our 
Figure 5 indicates that the observed relationship is close to the neutral expecta- 
tion rather than to the overdominant expectation. These results suggest that over- 
dominant selection is not important in the maintenance of allozyme polymor- 
phisms. A similar conclusion can be obtained from an  examination of allele 
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frequency distributions. CHAKRABORTY, FUERST and NEI (1980) examined the 
allele frequency distribution for 138 species and showed that, in all species ex- 
amined, the distribution was U-shaped and agreed well with the distribution 
expected under the neutral theory, except those of rare alleles. Their observed 
distributions are again drastically different from those given in Figure 6. 

Our study on the relationship between the average heterozygosity and the rate 
of gene substitution also suggests the unimportance of overdominant selection. 
Examining the rate of amino acid substitution in various proteins, KIMURA and 
OHTA (1971) and NEI (1975) estimated that the rate of amino acid substitutions 
that are detectable by electrophoresis is roughly IO-? per year per gene. Under 
the neutral mutation theory, this is equal to the mutation rate per year (KIMURA 
1968). Therefore, if we know the generation time, we can compute the muta- 
tion rate per generation ( U )  under the assumption of neutral mutations. Further- 
more, in some species it is possible to get a rough estimate of effective population 
size (e.g., AYALA 1972). Using this estimate and the mutation rate per genera- 
tion, we can compute the expected heterozygosity under the neutral theory by 
h = 4 N v / (  1 -I-   NU) . In most species, however, the observed average heterozy- 
gosity is lower than the neutral expectation (NEI 1980). Therefore, there must 
be some factors that reduce the level of heterozygosity. Obvious candidates for 
these factors are the bottleneck effect and random fluctuations of selection in- 
tensity (NEI 1975), but not overdominance. As seen from Table 3, overdominant 
mutations increase average heterozygosity tremendously compared with neutral 
mutations, when the rate of gene substitution is fixed. A detailed discussion on 
the relationship between average heterozygosity and the rate of gene substitution 
has been given by NEI (1980). 

It  should be noted, however, that the above conclusion refers to the general 
pattern of allozyme polymorphism, and it is still possible that at some specific 
loci, overdominant selection is operating. This is particularly so in the loci for 
histocompatibility and immunoglobulins, where a great amount of polymorphism 
is known to exist. Intensive genetic studies of these loci are now under way, and 
in the near future more data a b u t  the polymorphisms are expected to be col- 
lected. To know whether overdominant selection is really involved in these loci, 
a detailed study is necessary, with various alternative hypotheses being con- 
sidered. 

In the past ten years, the mathematical properties of the neutral theory have 
been studied extensively (KIMURA and OHTA 1971; NEI 1975; EWENS 1979). On 
the other hand, the properties of alternative hypotheses are still poorly under- 
stood, mainly because of the mathematical difficulties involved. However, in 
order to know the mechanism of maintenance of genetic variability, we must 
first know the mathematical properties of the alternative theories. In  the study 
of these properties, we believe that 1~6’s stochastic differential equations, as used 
in this paper, will be a valuable tool. 

We thank GEOFF WATTERSON for his valuable comments. This work was supported by Na- 
tional Science Foundation research grant DEB 76-06069 and Public Health Service research 
grant GM-20293. 
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