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In Pseudomonas fluorescens CHA0, mutation of the GacA-controlled aprA gene (encoding the major extra-
cellular protease) or the gacA regulatory gene resulted in reduced biocontrol activity against the root-knot
nematode Meloidogyne incognita during tomato and soybean infection. Culture supernatants of strain CHA0
inhibited egg hatching and induced mortality of M. incognita juveniles more strongly than did supernatants of
aprA and gacA mutants, suggesting that AprA protease contributes to biocontrol.

Plant diseases caused by soilborne root pathogens account
for major crop losses worldwide. Yet in a small number of
environments, i.e., in suppressive soils, little or no disease is
observed, despite the presence of pathogens. Disease suppres-
sion depends, in part, on microorganisms that are able to
antagonize pathogens (5, 10, 14, 28). The root-colonizing bac-
terium Pseudomonas fluorescens CHA0, which was isolated
from a suppressive soil, has been studied in detail as a model
strain for the biological control of several fungal plant diseases,
such as black root rot of tobacco and take-all disease of wheat
(5, 27). In this strain, as well as in other biocontrol pseudo-
monads, antifungal secondary metabolites, e.g., 2,4-diacetyl-
phloroglucinol, hydrogen cyanide, and pyoluteorin, are impor-
tant for biocontrol activity. These biocontrol factors are
synthesized in response to environmental conditions and to
population densities of the producer strain, whereby the GacS/
GacA two-component system exerts a crucial role as a positive

control element (6, 8, 9, 11, 26). Some rhizosphere microor-
ganisms, including P. fluorescens CHA0, can also act as antag-
onists of plant-pathogenic nematodes (23). For antagonistic
fungi, this biological control has been shown to involve extra-
cellular proteases (2, 21). In strain CHA0, the production of
the major extracellular EDTA-sensitive protease, AprA, is
controlled by the GacS/GacA signal transduction pathway (8,
17, 26, 29). The present study was undertaken to find out
whether this enzyme contributes to the biocontrol properties
of strain CHA0 in plant-nematode interactions.

Characterization of the aprA-aprI-aprD gene region involved
in production of the major exoprotease of strain CHA0. Strain
CHA803, a Tn5 insertion mutant derivative of wild-type CHA0
(20), lacked proteolytic and lipolytic activities on indicator agar
plates (17, 18) but showed wild-type production of antifungal
metabolites, indicating that the Tn5 insertion was not in gacS
or gacA (9). The Tn5 insertion was mapped to the 3� end of the

FIG. 1. Genetic organization of the region surrounding aprA in P. fluorescens CHA0 and Pf-5. The 6.7-kb SacI-BamHI fragment of strain
CHA0, which was sequenced in this study (GenBank accession no. AY644718), is aligned with the homologous region of strain Pf-5 (http:
//www.tigr.org) shown above. The sites where a translational �lacZ fusion and a Tn5 element are inserted in the chromosome of strains CHA805
and CHA803, respectively, are shown above the aprA and aprD genes. Papr, promoter of aprA; aph, kanamycin resistance gene.
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aprD gene (Fig. 1), whose deduced amino acid sequence has
56% identity with the ATP-driven translocator AprD, a com-
ponent of the type I secretion machinery required for the
secretion of alkaline protease AprA in P. aeruginosa (1, 3). By
a chromosome walking approach (7), the genes located up-
stream of aprD, that is, an open reading frame coding for an
amino acid transporter, dmpA (for a putative aminopeptidase),
aprA (for extracellular protease), and aprI (for the cognate
protease inhibitor), were cloned and sequenced in strain
CHA0 (Fig. 1). The genomic sequence of P. fluorescens Pf-5,
which is phenotypically and genotypically very similar to P.
fluorescens CHA0 (4, 15), predicts that the aprAID genes are
the proximal part of an aprAIDEF operon, which includes the
lipA gene (for extracellular lipase) at the 3� end (Fig. 1).

The deduced aprA gene product shows 62% identity with the
AprA alkaline protease of P. aeruginosa (3) and contains
Zn2�- and Ca2�-binding motifs. The calculated molecular
mass of 49.9 kDa for the secreted form of AprA is in reason-
able agreement with the value (47.1 kDa) previously deter-
mined for the EDTA-sensitive, major exoprotease of strain

CHA0 (17). Between the aprA and aprD genes lies the aprI
gene (Fig. 1) coding for a predicted 13.8-kDa protein which
shows 40% amino acid sequence identity with the P. aeruginosa
AprI protein, an AprA-specific inhibitor (3).

A nonpolar aprA mutation was constructed by the insertion
of a �lacZ cassette into the unique XhoI site of the chromo-
somal aprA gene (Fig. 1) in the wild type and in a gacS back-
ground, using the suicide plasmid pME6063 (Table 1). This
resulted in strains CHA805 and CHA806 (Table 1), respec-
tively. Strain CHA805 was exoprotease negative, as expected,
but lipase positive, in keeping with the nonpolar nature of the
�lacZ insertion. �-Galactosidase activities of the aprA�-�lacZ
translational fusion in strain CHA805 showed a marked cell
density-dependent expression profile. In contrast, in the gacS
mutant CHA806, almost no �-galactosidase activity was mea-
sured (Fig. 2).

Impact of the aprA gene product on nematode populations.
Meloidogyne spp., the root-knot nematodes, are sedentary en-
doparasites of a wide range of plants, including many of agro-
nomical importance. Meloidogyne incognita belongs to a group
of nematodes that cause important crop losses in developing
countries (12, 19). Culture supernatants of wild-type strain
CHA0 grown in 1/20-strength King’s B medium (0.1% [wt/vol]
Oxoid proteose peptone, 0.05% [wt/vol] glycerol, 0.3 mM

FIG. 2. GacS control of an aprA::�lacZ fusion in P. fluorescens
grown in liquid King’s B medium. �-Galactosidase activities were de-
termined by the Miller method (13) for aprA::�lacZ in the wild-type
derivative CHA805 (E) and in the gacS mutant CHA806 (F). The
growth rates of both strains were similar (data not shown). Each value
is the average � standard deviation from three different cultures.

TABLE 1. P. fluorescens strains and plasmids

Strain or
plasmid Description Reference

Strains of P.
fluorescens

CHA0 Wild type 27
CHA19 �gacS 29
CHA89 gacA::Kmr 11
CHA803 aprD::Tn5 20
CHA805 aprA::�lacZ This study
CHA806 �gacS aprA::�lacZ This study

Plasmids
pME3087 Suicide vector; ColE1 replicon, IncP-1-Mob,

Tcr
27

pME6063 5.0-kb aprA�-�lacZ-�aprA fragment inserted into
pME3087, suicide plasmid for aprA::�lacZ
chromosomal fusions

This study

TABLE 2. In vitro effects of culture filtrates of P. fluorescens strains
on M. incognita egg hatching and juvenile mortality

Strain or LSDa Hatchingb Mortalityb

Control 83a 18a
CHA0 51b 56b
CHA89 77a 25a
CHA805 70a 31a

LSDc 17 14

a Strains CHA0 (wild type), CHA89 (gacA), and CHA805 (aprA�-�lacZ) were
grown in 1/20 King’s B medium for 48 h. The control consisted of sterile medium.

b Hatching and mortality were tested as previously described (22) and are
expressed as the percentage of eggs hatched after 72 h of exposure and as the
percentage of juvenile mortality after 24 h of exposure, respectively. Data for
each strain and medium were obtained from three different experiments with six
repetitions. Means of the experiments in each column followed by different
letters are significantly different (P � 0.05) according to Fisher’s test.

c LSD, least significant difference.

TABLE 3. In vitro effects of the addition of 4 mM EDTA to
P. fluorescens culture filtrates on the mortality of

M. incognita juveniles

Straina
Juvenile mortalityb

�EDTA �EDTA

Control 16 19
CHA0 57* 33
CHA89 22 21
CHA805 19 24

a Culture filtrates of strains CHA0 (wild type), CHA89 (gacA), and CHA805
(aprA�-�lacZ) were grown in 1/20 King’s B medium for 48 h. The control was
made with sterile medium.

b Mortality is expressed as the percentage of dead juveniles after 24 h of
exposure. Data for each strain and treatment were obtained from three different
experiments with five repetitions. The mean of the experiment marked with an
asterisk is significantly different (P � 0.05) from all the other values according to
Fisher’s test (least significant difference � 20%).
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MgSO4, 0.3 mM K2HPO4) inhibited egg hatching and caused
mortality of the juveniles of M. incognita in vitro, in compari-
son with the uninoculated controls (P � 0.05) (Table 2). The
protease-negative mutants CHA805 (aprA) and CHA89 (gacA)
failed to inhibit egg hatching and to kill M. incognita juveniles
(Table 2). The addition of the protease inhibitor EDTA (4
mM) to a culture supernatant of strain CHA0 grown in King’s
B medium markedly reduced (P � 0.05) the juvenile killing
activity of strain CHA0 but had little effect on the supernatants
of the mutants CHA805 and CHA89 (Table 3). These data
support the involvement of AprA protease in the inhibition of
egg hatching and in killing of juveniles. However, AprA pro-
tease may not be the only antinematode factor of strain CHA0,
in that antibiotic compounds produced under GacA control
may also have a role in nematode control (23; I. A. Siddiqui
and S. S. Shaukat, unpublished data).

In comparison to nonbacterized controls, P. fluorescens
CHA0 applied to unsterilized sandy loam soil suppressed (P �
0.05) root-knot development and nematode final population
densities on both tomato and soybean under greenhouse con-
ditions (Table 4). Carbofuran (Furadan) treatment, however,
was more effective in reducing nematode population densities
in soil and roots and subsequent root-knot development in
both crops (Table 4). Strains CHA805 and CHA89 had no
significant impact on nematode population densities in soil and
root-knot disease in either crop (Table 4). Application of strain
CHA805 resulted in a reduction (P � 0.05), but not a complete
loss, of nematode final population densities in soybean roots
(Table 4). In these experiments, bacterial colonization of the
tomato and soybean rhizospheres was not significantly differ-
ent between the three strains tested (data not shown).

In conclusion, these findings are consistent with the notion
that AprA protease of strain CHA0 contributes, directly or
indirectly, to biocontrol of M. incognita. This study also extends
previous observations that P. fluorescens CHA0 has biological
control activity against root-knot nematodes (23–25).

Nucleotide sequence accession number. The 6.7-kb SacI-
BamHI fragment of strain CHA0 was sequenced in this study
and was deposited in GenBank under accession no. AY644718.
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