Table 4.
Effect assessment of machine learning models in the testing set.
| Models | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) | AUC (95%CI) |
|---|---|---|---|---|---|---|
| C5.0-5 | 70.10 | 96.72 | 25.00 | 68.60 | 81.82 | 0.609 (0.504-0.706) |
| ANN-5 | 76.29 | 78.69 | 72.22 | 82.76 | 66.67 | 0.755 (0.657-0.836) |
| SVM-5 | 68.04 | 91.80 | 27.78 | 68.29 | 66.67 | 0.598 (0.493-0.696) |
| Fisher-5 | 73.20 | 78.69 | 63.89 | 78.69 | 63.89 | 0.713 (0.612-0.800) |
| C5.0-3 | 65.98 | 60.66 | 75.00 | 80.43 | 52.94 | 0.678 (0.576-0.770) |
| ANN-3 | 67.01 | 67.21 | 66.67 | 77.36 | 54.55 | 0.669 (0.567-0.762) |
| SVM-3 | 60.82 | 49.18 | 80.56 | 81.08 | 48.33 | 0.649 (0.545-0.743) |
| Fisher-3 | 56.70 | 40.98 | 83.33 | 80.65 | 45.45 | 0.622 (0.517-0.718) |
| C5.0-8 | 85.57 | 81.97 | 91.67 | 94.34 | 75.00 | 0.868 (0.784-0.928) |
| ANN-8 | 82.47 | 77.05 | 91.67 | 94.00 | 70.21 | 0.844 (0.756-0.909) |
| SVM-8 | 68.04 | 60.66 | 80.56 | 84.09 | 54.72 | 0.706 (0.605-0.794) |
| Fisher-8 | 75.26 | 70.49 | 83.33 | 87.76 | 62.50 | 0.769 (0.673-0.849) |