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One of the few rRNA modifications conserved between bacteria and eukaryotes is the base dimethylation
present at the 3’ end of the small subunit rRNA. In the yeast Saccharomyces cerevisiae, this modification is
carried out by Dimlp. We previously reported that genetic depletion of Dim1p not only blocked this modifi-
cation but also strongly inhibited the pre-rRNA processing steps that lead to the synthesis of 18S rRNA. This
prevented the formation of mature but unmodified 18S rRNA. The processing steps inhibited were nucleolar,
and consistent with this, Dim1p was shown to localize mostly to this cellular compartment. dim1-2 was isolated
from a library of conditionally lethal alleles of DIM1I. In dimI-2 strains, pre-rRNA processing was not affected
at the permissive temperature for growth, but dimethylation was blocked, leading to strong accumulation of
nondimethylated 18S rRNA. This demonstrates that the enzymatic function of Dim1p in dimethylation can be
separated from its involvement in pre-rRNA processing. The growth rate of dim1-2 strains was not affected,
showing the dimethylation to be dispensable in vivo. Extracts of dim1-2 strains, however, were incompetent for
translation in vitro. This suggests that dimethylation is required under the suboptimal in vitro conditions but
only fine-tunes ribosomal function in vivo. Unexpectedly, when transcription of pre-rRNA was driven by a
polymerase II PGK promoter, its processing became insensitive to temperature-sensitive mutations in DIM1 or
to depletion of Dim1p. This observation, which demonstrates that Dim1p is not directly required for pre-rRNA
processing reactions, is consistent with the inhibition of pre-rRNA processing by an active repression system

in the absence of Dimlp.

In most eukaryotes, three of the four rRNA species are
excised from a single large RNA polymerase I (Pol I) transcript
(35S pre-rRNA in yeast) which is processed in a complex
pathway involving both endonucleolytic cleavages and exonu-
cleolytic digestions (Fig. 1) (reviewed in references 24, 42, and
46). The fourth mature species, 5S rRNA, is transcribed and
processed independently. During pre-rRNA processing, many
specific nucleotides within the rRNAs are covalently modified.
The major types of posttranscriptional modification are the
isomerization of uracil to pseudouridine, 2'-O methylation of
the ribose moieties, and base methylation. In eukaryotes, in-
teractions between trans-acting guide small nucleolar RNAs
(snoRNAs) and pre-rRNA identify nucleotides that are to be
modified by 2’-O methylation or pseudouridylation (8, 12, 20,
31, 32). Surprisingly, all of the guide snoRNAs tested so far in
yeast are nonessential for growth, demonstrating that the cor-
responding modifications are dispensable.

The only base modifications that have been studied in a
eukaryote are the mSAmSA doublet present at the 3" end of the
small subunit (SSU) rRNA (18S rRNA). In the yeast Saccha-
romyces cerevisiae, these modifications are made by the Dim1p
dimethylase. In contrast to 2’-O methylation and pseudouri-
dylation, 18S dimethylation does not appear to involve a guide
snoRNA cofactor. Moreover, expression of Dimlp in Esche-
richia coli is able to restore dimethylation to ksg4 mutants that
lack this activity, presumably showing that Dimlp is able to
function in the absence of snoRNA cofactors (23).

Dimlp is essential for viability (23), but the requirement for
the dimethylated nucleotides was unclear since cells depleted

* Corresponding author. Mailing address: Institute of Cell and Mo-
lecular Biology, University of Edinburgh, Swann Building, King’s
Buildings, EH9 3JR Edinburgh, Scotland. Phone: 44 131 650 7093.
Fax: 44 131 650 7040 or 8650. E-mail: denis.lafontaine@ed.ac.uk.

2360

of Dim1p not only lacked dimethylation but were also strongly
defective in the pre-rRNA cleavages at sites A; and A, that
generate 20S pre-rRNA (Fig. 1) (26). 20S pre-rRNA is the
immediate precursor to 18S rRNA, so this had the effect of
preventing the synthesis of mature but nonmodified rRNA.
Pre-rRNA molecules in which the two dimethylated adenosine
residues are replaced by guanosine, which cannot be modified,
were processed normally, showing that the mSAmSA nucleo-
tides are not themselves required for cleavage (26). Expression
of 18S rRNA with the double G substitution did not support
growth, but it was not clear whether the lack of dimethylation
or the substitution of the A residues, which are themselves
universally conserved in evolution, was responsible for this
defect.

In E. coli, ksgA strains that lack dimethylation are resistant
to kasugamycin, an antibiotic belonging to the aminoglycoside
family (14, 15). ksgA strains are only marginally affected for
growth, but ksgA extracts show various defects in translation in
vitro: (i) initiation requires a higher concentration of IF3 in the
absence of IF1 (35), (ii) accuracy is affected (43), and (iii) the
affinity between the subunits is decreased (34; reviewed in
reference 45). This is consistent with the localization of the
mSAmMSA residues at the interface between the ribosomal sub-
units at a site where crucial interactions take place during
translation (7, 29, 41). However, in vitro reconstitution exper-
iments showed that neither dimethylation nor the twin ad-
enosines are crucial for 30S subunit assembly and function (10,
22).

Previous analyses, therefore, had left two outstanding ques-
tions. What is the requirement for dimethylated nucleotides in
the synthesis and function of eukaryotic ribosomes? What is
the basis of the requirement for Dim1p in pre-rRNA process-
ing reactions? Specifically, does a regulatory system monitor
the association of Dim1p with pre-rRNA and inhibit process-
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FIG. 1. Structure of yeast 35S pre-rRNA and the pre-rRNA processing pathway. (A) 35S pre-rRNA. The sequences encoding the mature 18S, 5.8S, and 25S rRNAs
are embedded in the 5" and 3’ external transcribed spacers (ETS) and in ITS1 and ITS2. Sites of pre-rRNA processing are indicated with uppercase letters (A, to E),
and the oligonucleotides used for Northern hybridization and primer extension are indicated with lowercase letters (a to h). The site of dimethylation is denoted as
mSA. (B) Pre-rRNA processing pathway. Processing of the 35S primary transcript starts at site A, in the 5’ ETS. The resulting 33S pre-rRNA is processed at sites A
and A,, giving rise successively to the 32S pre-rRNA and to the 20S and 27SA, precursors. Cleavage at site A, separates the pre-TRNAs destined for the small and
large ribosomal subunits. The 20S precursor is dimethylated and endonucleolytically cleaved at site D to yield mature 18S rRNA. Cleavage of 27SA, at site A3, by RNase
MREP, is rapidly followed by exonucleolytic digestion to site Blg, generating the 27SBg precursor. Mature 25S rRNA and 7S pre-rRNA are released from 27SBg
following cleavages at sites C; and C,. 7S pre-rRNA undergoes a rapid 3'—5' exonuclease digestion to site E, generating the mature 3’ end of 5.8S rRNA (not
represented). For simplicity, only the major processing pathway, from 27SA, to 5.8Sg and 25S rRNA, is shown; an alternative pathway generates the minor 5.8S; rRNA,
which is 7 to 9 nucleotides 5’ extended. The steps that require Dim1p are indicated. (C) Pre-rRNA processing in diml TS strains. 35S pre-rRNA is cleaved normally
at site A. 33S pre-rRNA accumulates and is cleaved at site A;, providing the 27SA; that is normally processed to 5.8Sg and 25S and the aberrant 22S pre-rRNA that

is not dimethylated and not processed to 18S rRNA.

ing in its absence, or does Dim1p have an additional function
in pre-TRNA processing and/or ribosome assembly that is re-
quired for pre-rRNA cleavage? The approach that we adopted
was to screen a library of conditionally lethal alleles of DIM1 in
order to isolate mutations that uncouple the enzymatic func-
tion of Dimlp in methylation from its involvement in pre-
rRNA processing.

MATERIALS AND METHODS

Media and plasmids. Standard S. cerevisiae growth and handling techniques
were used. 5-Fluoro-orotic acid (5-FOA) was used in minimal medium at 1 g/liter
according to the recipe of Boeke et al. (4). The transformation procedure was as
described by Gietz et al. (13).

Plasmid pDL31.42 (2um URA3 DIM1) was isolated from a pFL44L (5)-based
yeast genomic library as previously described (23). DIMI1 was recovered from
pDL31.42 as a 3,282-bp Smal/Xhol fragment and subcloned in pFL36 (ARS CEN
LEU2) (5) digested with Pvull/Smal to give plasmid pTL6. A BamHI HIS3
cassette isolated from plasmid YDp-H (3) was filled and subcloned in the filled
Xbal site of the terminator region of DIMI on plasmids pTL6-dim1-2, pTL6-
dim1-9 and pTL6-dim1-1 to give constructs pTL39, pTL42, and pTL43, respec-

tively. Plasmid pTL17 is pJV12 (19) in which the LEU2 marker of pFL36 (5) was
subcloned in Sa/l. In pTL29, the Xhol/Sfil ribosomal DNA (rDNA) fragment of
pGAL::rDNA (16) was subcloned in pTL17. Plasmids pAT3 and pI12.34A33 and
plasmid pHT4467 are gifts from T. Preiss (European Molecular Biology Labo-
ratory [EMBLY]) and H. Tekotte (EMBL), respectively.

Epitope-tagged versions of Dim1p were constructed in plasmid pTL6 by in-
serting three copies of the human c-Myc epitope at either the amino- or carboxy-
terminal end of the protein (generating plasmids pTL18 and pTL25, respective-
ly). For plasmid pTL18, an Ncol 3X Myc cassette was inserted at the ATG codon
of DIM1I at the naturally occurring Ncol site. For the carboxy fusion, an in-frame
Sacl site was created at the end of the open reading frame (ORF) by site-
directed mutagenesis and a SacI 3X Myc cassette was inserted. The 3X Myc
cassettes were generated by PCR and have been described previously (25). All
constructs were checked by sequencing.

Construction of a library of conditional alleles of DIM1. The DIMI ORF was
mutagenized by PCR under the conditions described by Leung et al. (28). The
primers used for amplification with pDL31.42 were 5'-TAAAATTATACCATG
GGAAAGGCT-3" and 5'-TGATAAGAGAGCTCATGAAAAATG-3'. The
PCR product was subcloned as an Ncol/Sacl fragment in plasmid pTL6, and the
library was amplified in E. coli. Random sequencing revealed that the mutation
rate was approximately 0.46%. The DIM1 ORF being ~1 kb, this would give an
average of 4 to 5 mutations per gene. Transitions, transversions, and insertions
were detected.
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TABLE 1. Yeast strains used in this study
Strain Genotype Reference or comments
D150 a ura3-52 leu2-3,112 adel-100 his4-519 GAL™* BWGI1-7A, L. Guarente
YDL302 As D150 with URA3 GALI10::dim1 26
BMA38 a/a ade2-1/ade2-1 canl-100/canl-100 his3A200/his3A200 leu2-3,112/leu2-3,112 B. Dujon
trpl-1/trp1-1 ura3-1/ura3-1
YDL303 As BM38 with dimIA::HIS3/DIM1 Full DIM1 deletion made by PCR in strain BMA38
YDL304A a ade2-1 canl-100 his3A200 leu2-3,112 trpl-1 ura3-1 dimIA::HIS3 + Starting strain, segregant from YDL303 containing a
pDL31.42 (URA3 2pm DIM1I) URA3 2pm DIMI plasmid
YDL304B o ade2-1 canl-100 his3A200 leu2-3,112 trpl-1 ura3-1 dimIA::HIS3 + YDL304A sister strain
pDL31.42 (URA3 2pm DIM1I)
YDL209 a ade2-1 canl-100 his3A200 leu2-3,112 trpl-1 ura3-1 dimlA::HIS3 + YDL304A in which plasmid pDL31.42 has been shuf-
pTL6 (LEU2 ARS/CEN DIM1I) fled with plasmid pTL6
MBS a ade2 his3 leu2 trpl ura3 canl L-0 M-0 P. Sarnow (17)
YDL321 As MBS with dim1-2 diml-2 integrated as a dim1-2/HIS3 cassette isolated
from pTL39
YDL324 As MBS with dim1-1 diml-1 integrated as a dim1-1/HIS3 cassette isolated
from pTLA43
CH1462 o ade2 ade3 his3 leu2 ura3 canl 21
YDL314 As CH1462 with dim1-9 dim1-9 integrated as a dim1-9/HIS3 cassette isolated
from pTLA2
YDL315 As CH1462 with dim1-1 diml-1 integrated as a dim1-1/HIS3 cassette isolated
from pTLA3
YDL300 a/a ura3-52/ura3-52 lys2-801°""" lys2-801°"*" ade2-101°""Jade2-101°7""* 23
trpl Al/trpI Al his3A200/his3A200 leu2Al/leu2Al dimlA::URA3/DIMI
YDLI100A a; as YDL300 + pTL6 (LEU2 ARS/CEN DIMI) dimlA::URA3 segregant from YDL300
YDLI101A a; as YDL300 + pTL18 (LEU2 ARS/CEN 3X Myc-Dimlp) dimIA::URA3 segregant from YDL300
YDL102A a; as YDL300 + pTL25 (LEU2 ARS/CEN Dimlp-3X Myc) dim1A::URA3 segregant from YDL300

Isolation of conditional alleles of DIMI. The library was screened according to
the cotransformation and plasmid-shuffling procedure described by Sikorski and
Boeke (37). The shuffling strain was constructed as follows. A complete deletion
of DIMI was created in the diploid strain BMA38 by a one-step PCR strategy
(2, 25). The oligonucleotides used for amplification with pRS313 (38) were
5'-GGTTATAAGATCGATAAATTAGGAACAGTGCTATTATACAGTCTC
TTGGCCTCCTCTAG-3" and 5'-TTTTTCTTATCTTAGGTAAATAGTATA
CAAGCACTTACATAATCGTTCAGAATGACACG-3'. The resulting strain,
YDL303, was transformed with plasmid pDL31.42 and sporulated. Haploids
containing the deletion rescued by pDL31.42 were identified (strains YDL304A
and YDL304B [Table 1]).

The library was transformed into strain YDL304A and plated on minimal
medium lacking histidine and leucine (SD —His —Leu) at 30°C. One thousand
eight hundred transformants were patched onto SD —His —Leu at 25°C. The
resulting master plates were replica plated on 5-FOA at 25°C. After two rounds
of selection on 5-FOA, the 5-FOA-resistant clones were tested for growth at
various temperatures (18, 25, 30, and 37°C). Approximately 11% of the clones
remained 5-FOA sensitive, probably due to nonconditional inactivation. Thirty-
two thermosensitive (TS) clones were isolated, some of which were also slightly
cryosensitive (CS). No clones showing only a CS phenotype were recovered.
Ten conditional alleles, dim1-1 to diml-10, were selected to be further char-
acterized.

RNA extraction, Northern hybridization, and primer extension. RNA extrac-
tion, Northern hybridization, and primer extension were as described previously
(26). Oligonucleotides a, b, d, e, f, and g were named d, e, f, g, I, and m, respec-
tively, in reference 26. Oligonucleotides ¢ and h are TCTCTTCCAAAGGGTCG
and GCACCGAAGGTACCAG, respectively. RNA analysis of dimI-1 to diml-
10 alleles were performed in strain YDL304A cured of plasmid pDL31.42 and
bearing the corresponding pTL6-dim1-t.s. plasmid. The reference wild-type strain
used was YDL209 (Table 1).

For the experiment presented in Fig. 7, dim1-1 HIS3 and dimI-9 HIS3 inte-
grative cassettes were recovered from plasmids pTL43 and pTLA42 by EcoRl/
Xhol digestion and transformed in strain CH1462 (21).

To allow HIS3 selection in strain CH1462 (ade2 ade3 [Table 1]), an ADE3
gene was expressed from plasmid pHT4467 (ADE3 URA3). The resulting
strains, YDL314 (dim1-9) and YDL315 (diml-1), were transformed with either
pTL29 or pGAL::rDNA and grown at permissive temperature in glucose mini-
mal medium lacking leucine or uracil, respectively, before being transferred to
37°C for 8 h. For GAL Dim1p depletion, strain YDL302 transformed with pTL29
was grown at 30°C in galactose minimal medium lacking uracil and leucine. Cells
were harvested by centrifugation, washed, and resuspended in glucose min-
imal medium lacking uracil and leucine. During growth, cells were diluted
with prewarmed medium and constantly maintained in early exponential
phase.

In vitro translation. Cytoplasmic S30 extracts of strains YDL321, YDL324,
and the isogenic wild-type control strain MBS were prepared as described pre-
viously (17, 40). Strains YDL321 and YDL324 were constructed as follows:
integrative cassettes (diml [TS] HIS3) were recovered from plasmids pTL39
(dim1-2) and pTLA43 (dimi-1) by EcoRI/Xhol digestion and transformed into
strain MBS. Poly(A) substrates were prepared as described previously (40) with
constructs pAT3 (preprolactin) and pI12.34A33 (chloramphenicol acetyltrans-
ferase [CAT]). Both substrates were capped with the ™"GpppG analog (New
England Biolabs). Translation reactions (40) were for 60 min at 24°C with 0, 2,
and 10 ng of preprolactin mRNA or 0, 20, and 100 ng of CAT mRNA. Trans-
lation products were analyzed by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis.

Antibiotic sensitivity assay. As a preliminary experiment, equal amount of
cells were plated on yeast extract-peptone-dextrose (YPD), and 5 and 10 pl of
various antibiotic stock solutions were spotted on 5-mm sterile filter disks. Stock
solutions were as follow: paromomycin (50 mg/ml), G418 (3 mg/ml), hygromycin
B (3 mg/ml), cycloheximide (1 mg/ml), and neomycin B (20 mg/ml). Three
prokaryote-specific antibiotics, streptomycin (100 mg/ml), erythromycin (50 mg/
ml), and kasugamycin (100 mg/ml), were also tested. All antibiotics were pur-
chased from Sigma. dimI TS strains were found to be hypersensitive to paro-
momycin and neomycin B. All strains were also sensitive to cycloheximide but to
the same extent as the wild-type isogenic control. The other antibiotics tested
showed no effect. For the experiment presented in Fig. 10, paromomycin and
neomycin B were used at 0, 250, 375, and 500 pg/pl and 0, 100, 400 and 800
wg/ml, respectively. Plates were incubated at the permissive temperature of
23°C.

Indirect immunofluorescence. Indirect immunofluorescence was performed
on strains expressing 3X Myc-Dim1p or Dim1p-3X Myc fusion proteins (strains
YDLI01A and YDL102A, respectively [Table 1]). Strain YDL100A, expressing
wild-type Dim1p, was used as a negative control. Cells were grown in YPD to an
optical density at 600 nm of 0.5 to 1.0, fixed in 37% formaldehyde for 1 h, and
permeabilized with Zymolyase in sorbitol buffer (1.2 M sorbitol, 20 mM KPI [pH
7.4]). Cells were incubated for 1 h with either anti-Nop1p antibody (monoclonal
antibody 66, dilution 1/50; kindly provided by John Aris [1]) or anti-Myc antibody
(9E10, dilution 1/50; BAbCO). Both antibodies are mouse monoclonal antibod-
ies; therefore, cells were decorated independently. Detection with Texas red was
for 1 h at a dilution of 1/50 (Texas red-conjugated affinipure F(ab’), goat anti-
mouse immunoglobulin G [H+L]; Dianova). DNA was stained with 4',6-di-
amidino-2-phenylindole (DAPI). Strains YDL100A, YDL101A, and YDL102A
are haploids containing the dimIA::URA3 deletion of strain YDL300 (Table 1)
rescued by the wild-type or epitope-tagged proteins expressed from plasmids
pTL6 (Dimlp), pTL18 (3X Myc-Dimlp), and pTL25 (Dim1p-3X Myc), respec-
tively. The growth rates of strains YDL100A, YDL101A, and YDL102A are
identical, showing the fusion proteins to be fully functional.
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FIG. 2. Conditional growth phenotypes of dim! TS strains. Dilutions (1X to 10?X) of strains dim1-1 to dim1-10, along with the wild-type isogenic DIM1 control
(strain YDL209) (W.T.), were spotted on minimal plates at 18, 25, 30, and 37°C and incubated for 3 days. Most of the strains are very sensitive to elevated temperatures;

some are also slightly CS (dimI-1 and dimI-7).

RESULTS

Isolation of conditional alleles of DIM1. A library of condi-
tional alleles of DIM1 was created by mutagenic PCR and
screened by plasmid exchange (37). A diploid strain containing
a fully deleted dim1-A allele was transformed with a multicopy
URA3 plasmid bearing a wild-type copy of DIMI. Haploid
dimI-A progeny, rescued by the wild-type plasmid, were used
as starting strains (strains YDL304A and YDL304B [Table 1]).
The ORF of DIMI was amplified under mutagenic PCR con-
ditions and subcloned into an ARS/CEN LEU2 plasmid (see
Materials and Methods). The resulting library was transformed
into strain YDL304A. Transformants were replica plated on
5-FOA, which selects for the loss of the wild-type URA3 plas-
mid. 5-FOA-resistant clones, which have lost the wild-type DIM1
plasmid, were screened for growth defects at various temper-
atures. Among 1,600 5-FOA-resistant clones, 33 showed a con-
ditional phenotype for growth. Most of them were TS, with
some being also slightly CS (Fig. 2). No strain showed only a
CS phenotype. Ten alleles, dim1-1 to dim1-10, were selected to
be further characterized.

The coding sequences of dimI-1 to dimI-10 were fully se-
quenced; all contained from one to six substitution mutations
(Fig. 3 and Table 2). It may be significant that mutations at
four positions were selected twice (Table 2). Position 218 was
mutated in both dim1-1 and dimI-4, and an identical substitu-

dim1-1
dimi1-2
* dim1-3
dim1-4
dim1-5
dim1-6
dim1-7
dim1-8
* dim1-9
* e dim1-10

FIG. 3. Mapping of dimI TS mutations. Schematic representation of Dim1p
(318 residues) drawn to scale. The S-adenosylmethionine binding domain
(SAM), the putative catalytic residues (NxPY), and the 32 point mutations
(asterisks) identified in the 10 diml TS alleles are represented.

tion (S239P) is present in both dimi-6 and dim1-10. Notably,
dimI-4 and dimI-5 have two identical mutations at identical
positions (172 and 197), dim1-4 having an additional mutation
at a position which is also altered in dimi-1 (position 218).
Although mutations were spread over the whole length of the
protein, we noticed a degree of clustering centered around
positions 170 and 220; in the latter case, these fall in a region
which is not conserved in E. coli KsgAp.

None of the mutations fell into the predicted binding site for
the cofactor S-adenosylmethionine (residues 60 to 76) (9, 18).
The NXPY residues (positions 128 to 131) are conserved in
all known SSU rRNA dimethylases, including human Dim1p
(23a). These match the consensus sequence (N/D/S)PP(Y/F),
which has been shown to be crucial for catalysis in the case of
the N-6-adenine methylase EcoKI (48). Two mutations (I1126V
in dimI-2 and 1133V in dim1-3) directly flank the NXPY res-
idues, suggesting that they might directly affect catalysis.

dim1-2 uncouples the two functions of Dimlp. RNA was
extracted from the 10 diml TS strains and the isogenic wild-
type strain (strain YDL209 [Table 1]) at the permissive tem-
perature (23°C) and at 2, 8, and 23 h after transfer to 37°C.

Northern hybridization revealed that at the nonpermissive
temperature, all diml TS strains are inhibited in cleavage at
sites A, and A,, resulting in depletion of the 20S pre-rRNA
and 18S rRNA (Fig. 1). These data are presented for five
representative alleles (diml-1, diml-2, diml-6, diml-7, and

TABLE 2. Nature and positions of mutations in dimi TS alleles
Allele

Mutation(s)

diml-1 E21G; N213D; V218A; D219G; D224G
dim1-2 $25G; 1126V; F159S; R174S; Y220N; M273T
dim1-3 1133V

diml-4 Y172D; R197S; V218E

dim1-5 Y172D; R197S

dimI-6 N80D; N178D; S239P; M265V

dimI-7...... C173R; H274R; V313A

dimlI-8 N31S; A92E; K278R; L304P

dim1-9 W223R

TS N N41S; 1238V; S239P
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FIG. 4. Pre-rRNA processing in dim1 TS strains. (A) Probe against the 5" region of ITS1 (oligonucleotide e [Fig. 1A]). (B) Probes against mature 18S and 25S rRNA
(oligonucleotides a and f [Fig. 1A]). RNA was extracted from the DIM1 (strain YDL209) (W.T.) and diml TS strains following growth at 23°C (0-h lanes) and at
intervals following transfer to 37°C (2-, 8-, and 23-h lanes) and separated on 1.2% agarose-formaldehyde gels. The 22S pre-rRNA extends from site A to site A3 and
results from the inhibition of cleavages at sites A; and A, in the diml TS strains. At the late time point of transfer to 37°C (23 h), the normally minor and barely
detectable 23S pre-rRNA that extends from the 5’ end of the primary transcript to site A; accumulates to the same levels in the wild-type and dim1 TS strains. In this
experiment, all samples, including the wild-type control, showed some accumulation of 35S pre-rRNA and 23S RNA after 23 h at 37°C; this was not observed in other

experiments.

dimI-9) in Fig. 4. In the dimI mutants, there is seen an aber-
rant processing pathway in which the 35S pre-rRNA is pro-
cessed normally at site A, but the resulting 33S pre-rRNA is
not processed at sites A, and A,. Instead, cleavage at site A5 in
internal transcribed spacer 1 (ITS1) generates the 22S RNA.
Concomitant with the appearance of the 22S species, the 20S
and 27SA, pre-rRNAs are lost (Fig. 4A and data not shown).
This is followed by depletion of the mature 18S rRNA (Fig.
4B), indicating that the aberrant 22S RNA cannot be pro-
cessed to 18S rRNA. No alterations in the level of 27SB pre-
rRNA (data not shown) or mature 25S rRNA (Fig. 4B) were
observed, indicating that subsequent processing of the 3’ re-
gion of the pre-rRNA was unaffected.

The pre-rRNA processing defects observed in the dimI TS
strains closely resemble those seen on depletion of Dimlp in
GAL::diml strains (26). The timing of the appearance of the
processing defects is strikingly different in the various diml1 TS

strains. In the diml-1, dim1-6, and dim-9 strains, processing is
strongly inhibited 2 h after transfer to 37°C. In contrast, the
22S RNA is only weakly detected in the dimI-2 strain 2 h after
transfer to 37°C, and the inhibition of processing is much
stronger at later times. The 22S RNA is detected in the dim1-7
strain after 8 h. This may reflect a distinction between mutants
in which Dim1p is rapidly inactivated by transfer to 37°C com-
pared to mutations which do not allow synthesis of new, active
Dimlp.

Although all strains accumulate 22S pre-RNA (Fig. 4 and
data not shown), there are marked differences in 18S rRNA
depletion. dimli-1, dim1-4, dim1-6, dimI-8, and dimI-10 strains
all showed strong 18S rRNA depletion, while dimi-5 and
dimI-9 strains showed only mild depletion and dim1-2, dimI-3,
and dimI-7 strains were only slightly depleted (Fig. 4 and data
not shown). No clear correlation could be established between
the locations of the point mutations and the phenotypes, but it
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FIG. 5. Overall level of dimethylation in dim1 TS strains. RNA was extracted from the DIMI (strain YDL209) (W.T.) and dim1 TS strains following growth at 23°C
(0-h lanes) and at intervals following transfer to 37°C (2-, 8-, and 23-h lanes) and analyzed by primer extension with oligonucleotide e (Fig. 1A). The positions of primer
extension stops due to the presence of the modifications are indicated. A DNA sequence made with the same primer is shown as a size marker.

is notable that dimI-4, which contains only one additional
mutation (at position 218) compared to dimI-5, shows stronger
18S rRNA depletion. A substitution at the same position is
present in diml-1, which shows a similar phenotype. dimlI-6
and diml-10 strains are also severely affected in 18S rRNA
synthesis and share an identical mutation at position 239. No
attempt was made to further separate the mutations.

The level of pre-rRNA dimethylation was assessed by primer
extension with an oligonucleotide complementary to a se-
quence in ITS1 located 218 nucleotides downstream of the site
of modification (oligonucleotide e [Fig. 1A]). Following trans-
fer to 37°C, the primer extension stop corresponding to dim-
ethylation is strongly reduced in all diml TS strains (Fig. 5).
Northern analysis data (Fig. 4) indicate that the overall levels
of pre-rRNA species that contain the site of dimethylation are
not strongly altered in most dim! TS mutants. As with the
pre-TRNA processing defects, dimethylation is inhibited to var-
ious extents and with different kinetics in the different diml TS
alleles (Fig. 5).

The accumulation of nondimethylated 18S rRNA can be
monitored by primer extension with an oligonucleotide com-
plementary to the very 3’ end of the mature rRNA (oligo-
nucleotide d [Fig. 1A]), since the m$A modification blocks
reverse transcription (see the legend to Fig. 6). The level of non-
dimethylated rRNA and pre-rRNA is indicated by the stop at
position ¢, which represents reverse transcriptase molecules
that were able to read through the unmodified site of dimeth-
ylation (26). The very faint band visible at this position in the
wild-type strain (Fig. 6, lanes 1 to 4) represents primer exten-
sion on the unmodified pre-rRNA, which is very much less
abundant than the mature rRNA (see reference 26). The GAL::
dim1 strain (Fig. 6, lane 27) does not accumulate nondimeth-
ylated 18S rRNA; this is as previously reported (26). In con-
trast, several diml TS strains accumulate unmodified 18S rRNA.
Strong accumulation is seen in the dimI-2 and dim1-7 strains
(Fig. 6, lanes 5 to 12), even at the permissive temperature, and
some accumulation is seen in the dimI-9 strain at 37°C (Fig. 6,
lanes 13 to 16). Little nondimethylated 18S was detected in the
diml-1 or diml-4 strains (Fig. 6, lanes 17 to 24).

Thus, at the nonpermissive temperature, all of the dim! TS
strains analyzed are impaired both in cleavage of pre-rRNA at
sites A; and A, and in dimethylation of pre-rRNA, although
the kinetics and severity of these phenotypes vary between
mutants. Some of the dim1 TS strains accumulate nondimethy-

lated 18S rRNA, showing that the pre-rRNA methylation de-
fect can be uncoupled from the pre-rRNA processing defect.
This is particularly true in the dimlI-2 strain, which shows no
clear pre-rRNA processing defect at the permissive tempera-
ture but has very low levels of pre-rRNA modification.

It is notable that no diml TS strain defective only in pre-
rRNA processing was isolated (Fig. 4 and 5). Dim1p must bind
its substrate to modify the two adenosines, and this interaction
with the pre-rRNA may be both necessary and sufficient to
fulfill the requirement for Dimlp in pre-rRNA processing.
Since dimethylation is dispensable in vivo (see below), the TS
screen would not have isolated strains defective only in meth-
ylation without a pre-rRNA processing defect.

Pre-rRNAs transcribed from the PGK promoter do not re-
quire Dimlp for processing. The studies on pre-rRNA pro-
cessing described above analyzed pre-rRNA transcribed from
the chromosomal rDNA by RNA Pol I. Unexpectedly, the
processing of pre-rRNA transcribed by the constitutive RNA
Pol II PGK promoter is much less sensitive to the dim-1 and
dim1-9 mutations than is processing of the Pol I-transcribed
pre-trRNA (shown for dimi-1 in Fig. 7). The Pol II-driven
rDNA repeat contains neutral tags within the mature rRNA
sequences; these allow the use of hybridization probes that
are specific for either the chromosomal or Pol II-transcribed
rRNAs. Transfer of the dimI-1 strain to 37°C for 20 h result-
ed in underaccumulation of the 18S rRNA synthesized from
pre-trRNA transcribed from chromosomal rDNA (Fig. 7,
lower panel [compare lane 3 with 4 and lane 5 with 6]) as
described above. In contrast, the level of 18S rRNA synthe-
sized from pre-rRNA transcribed from the PGK promoter
carried on plasmid pTL29 (see Materials and Methods) was
reduced to a lesser extent (Fig. 7, upper panel [compare lanes
5 and 6]). Accumulation of 18S rRNA transcribed from a
different RNA Pol II promoter, GAL10 (Fig. 7, upper panel
[compare lanes 3 and 4]), was reduced to an extent similar to
the rRNA transcribed by Pol I. The same effects were seen in the
diml-9 strain (data not shown); other dim! alleles were not
tested.

Similar effects were observed in the GAL:diml strain
(YDL302 [Table 1]) following depletion of Dim1p. Following
transfer to glucose, the level of 18S rRNA synthesized by Pol
I from chromosomal rDNA (Fig. 8B) is strongly depleted. In
contrast, little depletion of the 18S rRNA synthesized from the
pPGK::rDNA construct is observed (Fig. 8A). The effects of
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FIG. 6. Levels of nondimethylated 18S rRNA in dimI TS strains. (A) RNA was extracted from the DIM1 (strain YDL209) (W.T.) and dimI TS strains following
growth at 23°C (0-h lanes) and at intervals following transfer to 37°C (2-, 8-, and 23-h lanes) and analyzed by primer extension with oligonucleotide d, which is
complementary to the very 3’ end of 18S rRNA (Fig. 1A). The reactions were performed with dideoxyadenosine nucleotides in place of deoxyadenosine. The site of
priming is 3 nucleotides 3’ to A,,g,, and no A residues are incorporated before the site of modification (see panel B). Dimethylation of A;579 A;7g, blocks primer
extension. Extensions carried out on nondimethylated rRNA extend through the A;5,9 A5, site but are blocked 2 nucleotides 5’ to A9 (position U,,,). The
positions of primer extension stops due to the presence of the modifications are indicated (a, b and c¢). A DNA sequence made with the same primer is shown as a size
marker. Lanes 25 to 27, control lanes (lane 25, no RNA [P denotes primer alone]; lane 26, same as lane 4; lane 27, RNA extracted from the GAL::dim1 strain (strain
YDL302) following transfer to glucose for 60 h). (B) Schematic representation of the 3’ end of 18S rRNA. Upper line, rRNA strand (the thick line represents the last
16 nucleotides). Lower line, complementary cDNA strand (the thick broken line represents oligonucleotide d). The three potential extended products are represented
by thin lines (a, b, and c¢). The positions of the primer extension stops due to the presence of the modifications are indicated as a and b; the position of the primer

extension stop due to read-through of the dimethylation site is indicated as c.

genetic depletion of two other components required for pre-
rRNA processing at sites A; and A, were also tested. On de-
pletion of snR30 (30) or Rrp5p (47), the processing of the
PGK-driven pre-rRNAs was inhibited to the same extent as
processing of the Pol I-transcribed pre-rRNA (33a).

The processing of the pre-rRNAs transcribed from the PGK-
driven rDNA cannot readily be assessed in these strains, since
Pol I transcription is much stronger than PGK-driven tran-
scription. However, we interpret these data as showing that the
cleavage of sites A; and A, is specifically resistant to mutations
in DIMI or depletion of Dimlp in pre-rRNA molecules that
have been transcribed from the PGK promoter. The mecha-
nism that relieves the Dim1p dependence may be related to the
packaging of the pre-rRNA transcripts with different sets of
proteins. Whatever the mechanism, this observation demon-
strates that Dim1p is not directly required for pre-rRNA pro-
cessing. We interpret this as strong evidence for the existence
of a system that represses pre-rRNA processing in the absence
of Dimlp.

méA,,,oméA, ¢, is not essential in vivo but is required for
translation in vitro. At the permissive temperature, the dimI-2
strain showed no pre-rRNA processing defect but predom-
inantly contained nondimethylated 18S rRNA. The dim1-2
strain showed no clear growth inhibition compared to the oth-

erwise isogenic DIM] strain in liquid or solid minimal medium
or complete medium at 23°C (data not shown). This demon-
strates that 18S rRNA dimethylation is dispensable for trans-
lation in vivo.

In order to test whether dimethylation affected ribosome
function at a more subtle level, extracts prepared from wild-
type and diml-2 strains grown at the permissive temperature
were tested for the ability to translate exogenous mRNA in
vitro. As a control, extracts from a dimlI-1 strain that was not
impaired in rRNA methylation at the permissive temperature
were also tested.

The diml alleles were integrated into strain MBS (see Ma-
terials and Methods and Table 1), which is particularly suitable
for such analysis (17). Standardized amounts of extracts pre-
pared from strains YDL321 (dim1-2), YDL324 (dimi-1), and
the isogenic wild-type control strain MBS were incubated with
various amounts of either CAT mRNA (Fig. 9B and D) or pre-
prolactin mRNA (Fig. 9A). Figures 9A and B present the anal-
yses of two independently isolated diml-2 strains (YDL321-1
and YDL321-2). Translation products were easily detected at
the expected lengths when wild-type extracts were incubated
with either of the two mRNAs (Fig. 9A, B, and D, lanes 2 and
3). No product was detected for either mRNA substrate when
the dim1-2 extracts were used (Fig. 9A and B, lanes 4 to 9, and



VoL. 18, 1998

<
: 8k
ol e E
RNA pol Il 68 oio oﬁo
85 8§
258 ' o0 "0
188 ' " ”

RNA pol |

s " 90 "W

188 .....n
il italilistils

FIG. 7. 18S and 25§ accumulation in dimI TS strains expressing rDNA from
different promoters. Lane 1, RNA extracted from a DIM1 wild-type strain; lane
2, RNA extracted from a DIM1 wild-type strain also expressing pre-rRNA from
a GAL promoter; lanes 3 and 4, RNA extracted from a diml-1 strain also
expressing pre-rRNA from a GAL promoter; lanes 5 and 6, RNA extracted from
a diml-1 strain also expressing pre-TRNA from a PGK promoter. The same
Northern filter was hybridized with probes complementary to the 25S and 18S
rRNAs. The probes used are specific either for the tagged rRNAs synthesized
from the RNA Pol II promoter or for the nontagged rRNAs transcribed from the
chromosomal rDNA (RNA Pol I).

Fig. 9D, lanes 4 to 6). Extracts from the dimI-1 strain were less
competent for translation than was the wild-type control (Fig.
9D, lanes 8 and 9) but consistently exhibited substantially
greater translation than did the dimI-2 strain. The reduced
translation may be related to the mild processing defect pres-
ent in the diml-1 strain, which accumulated low levels of the
22S pre-rRNA even at the permissive temperature (Fig. 4A,
lane 9). Figure 9C shows the analysis of the level of 18S rRNA
dimethylation in the cell extracts used for Fig. 9A and B. We
concluded that in the dimI-2 strains, the 40S subunits contain
nondimethylated 18S rRNA and are not competent for trans-
lation in vitro.

diml TS strains are hypersensitive to aminoglycoside anti-
biotics. To identify more subtle effects on translation in vivo,
representative diml TS strains were tested for their sensitivi-
ties towards a range of antibiotics at the permissive tempera-
ture (see Materials and Methods). Strains carrying diml-1,
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FIG. 8. pPGK:rDNA transcripts are insensitive to Dimlp depletion. (A)
Probes specific to mature 25S and 18S rRNA produced from the pPGK::rDNA
construct (oligonucleotides b and g [Fig. 1A]). (B) Probes specific to the mature
25S and 18S rRNA produced from the chromosomal rDNA units (oligonucleo-
tides ¢ and h [Fig. 1A]). RNA was extracted from the GAL:dim1 strain trans-
formed with the pPGK::rDNA construct following growth in galactose (0-h
lanes) and at intervals following transfer to glucose (2- to 60-h lanes) and
separated on a 1.2% agarose-formaldehyde gel.
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FIG. 9. In vitro translation analysis of diml TS strains. Cytoplasmic S30 ex-
tracts of dimI-2 strains (YDL321-1 and YDL321-2), a dimI-1 strain (YDL324),
and the wild-type (W.T.) isogenic control (strain MBS) were prepared following
growth at 23°C. Standardized amount of extracts were incubated with 0, 2, and
10 ng of preprolactin mRNA (A) or 0, 20, and 100 ng of CAT mRNA (B and D).
YDL321-1 and YDL321-2 are two independently isolated integrants of the
dimI-2 allele in the MBS strain (see Materials and Methods and Table 1). The
dimI-2 strain used in panel D is YDL321-2. Translation products were analyzed
by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and are indicated
at their expected lengths (11 and 25 kDa). (C) 18S rRNA dimethylation in cell
extracts, analyzed as described in the legend to Fig. 6. RNA was extracted from
strains YDL321-1, YDL321-2, and the wild-type strain (strain MBS) following
growth at 23°C. Lanes 1 to 3, control lanes (lane 1, no RNA [P denotes primer
alone]; lane 2, RNA extracted from strain MBS following transfer to 37°C for
23 h; lane 3, RNA extracted from the GAL:diml1 strain [strain YDL302] fol-
lowing transfer to glucose for 60 h).
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diml-2, and dimI-9 were hypersensitive to paromomycin and
neomycin B to approximately equal extents (Fig. 10 and data
not shown). These two antibiotics belong to the aminoglyco-
side family and are known to induce misreading and suppres-
sion of nonsense mutations in yeast (33, 39). This observation
suggested that each of the diml TS strains analyzed had an
additional assembly defect which resulted in antibiotic sensi-
tivity. This appears to be unrelated to the degree of rRNA
dimethylation.
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FIG. 10. Antibiotic sensitivities of dimI TS strains. Dilutions (1X and 10X)
of dimI-1 and dimI-2 strains, along with the isogenic wild-type (W.T.) DIM1
control strain, were spotted on complete medium supplemented with paromo-
mycin and neomycin B at the concentrations indicated. Plates were incubated at
23°C.

Dimlp is localized to the nucleus with nucleolar enrich-
ment. To determine the subcellular location of Dim1p, the pro-
tein was tagged with three copies of the human c-Myc epitope
at either the amino- or carboxy-terminal end (see Materials
and Methods). Both fusion proteins were expressed in a dim1-
A deleted background and were shown to be fully functional
(strains YDL101A and YDL102A [Table 1]).

The fusion proteins were localized by indirect immunofluo-
rescence. Figure 11D presents the results of the carboxy-ter-
minal fusion (strain YDL102A). The amino-terminal fusion
gave an identical signal (data not shown). Comparison to
DAPI staining of the DNA (Fig. 11C) and the localization of
the nucleolar protein Noplp (Fig. 11B) reveals that the Dim1p
fusion protein is localized to the nucleus with enrichment in
the nucleolus, which forms a cap-like structure slightly dis-
placed from the DAPI-stained region. Little cytoplasmic stain-
ing was detected.

DISCUSSION

We report here that mutations in DIM1 can uncouple the
requirements for Dimlp in pre-rRNA modification and pro-
cessing. All of the dim1 alleles that were isolated from a tem-
perature-sensitive library were found to block pre-rRNA pro-
cessing at the nonpermissive temperature (37°C), although the
kinetics of inhibition varied. In addition, the dimlI-2 allele
blocks rRNA dimethylation at the permissive temperature
(23°C) but shows no pre-rRNA processing defect at this tem-
perature. This resulted in the accumulation of high levels of
nondimethylated 18S rRNA. The dim1-2 strains had no detect-
able growth defect at 23°C, showing the dimethylation to be
dispensable for ribosome function in vivo.

Pre-rRNA molecules in which the two adenosine residues
are replaced by guanosines that cannot be modified are pro-
cessed normally but do not support growth (26). Additionally,
these substitutions give rise to a reduced level of 18S rRNA at
low temperatures, possibly reflecting an assembly defect, which
is often associated with cold sensitivity. From the dimI-2 anal-
ysis, it is clear that the lethality of the G,,,9 G5, cis mutation
and the cold-sensitive processing phenotype are due to the
substitution of the adenosines at these two universally con-
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served positions. In E. coli, both dimethylation and the twin
adenosines were shown to be dispensable for function and
assembly in vitro (10, 22), but their importance in vivo has not
been assessed.

Strikingly, extracts prepared from dimI-2 strains grown at
23°C lacked detectable activity for translation in vitro. Extracts
prepared from diml-1 strains, which have normal levels of
rRNA dimethylation, were competent for in vitro translation,
although with lower activity than in the wild-type extract.
While we cannot exclude the possibility that ribosomes synthe-
sized in the dimI-2 mutant have some additional defect, it
seems likely that dimethylation is required for in vitro trans-
lation in yeast extracts. We speculate that the dimethylation
fine-tunes the function of the 40S ribosomal subunit in vivo but
is essential under the suboptimal in vitro conditions.

Other rRNA modifications, 2'-O methylation and pseudo-
uridine formation, are directed by guide snoRNAs (8, 12, 20,
31, 32). In all cases tested, the guide functions of the snoRNAs
were completely dispensable for growth, indicating that these
modifications are, like Dimlp dimethylation, dispensable for
ribosome function in vivo. The requirements for the 2'-O-
methyl and pseudouridine modifications, however, have not
been tested in vitro.

Prokaryotic ksgA strains lack rRNA dimethylase activity and
are resistant to the aminoglycoside antibiotic kasugamycin
(14, 15, 44). Hypersensitivity toward the aminoglycoside an-
tibiotics paromomycin and neomycin B was observed in
diml1 TS strains. This could not be correlated, however, with
dimethylation; dim1-1 and dimI-9 strains, which do not accu-
mulate nondimethylated SSU rRNA, are as sensitive to ami-
noglycosides as are dimI-2 strains. We speculate that the dimI
TS strains analyzed bear an additional assembly defect respon-
sible for antibiotic sensitivity. Hypersensitivity to paromomycin
and neomycin B has previously been reported in yeast strains
carrying mutations in NSRI and RRPI, which are also required
for normal pre-rRNA processing (11, 27). Neither of these
proteins were reported to be involved in rRNA modification,
and in both cases an assembly defect is likely to underlie the
antibiotic sensitivity observed.

Model for a regulatory mechanism in ribosome synthesis.
We reported previously that cells depleted of Dimlp are in-
hibited in cleavage of the 33S pre-rRNA at sites A; and A,
(26), and this was also the case in all of the dim! TS strains at
the nonpermissive temperature. However, dimethylation was
found to occur on the 20S pre-rRNA, which is the product of
cleavage at sites A; and A, (Fig. 1), consistent with early
reports that the formation of mSAmSA is a late event in ribo-
some synthesis (6, 36). Since the cleavages at sites A; and A,

DAPI TR

o Nopip

o myc

FIG. 11. Subcellular localization of Dimlp. Indirect immunofluorescence
with strain YDL102A (Dim1p-3X Myc). Cells were incubated with either anti-
Noplp (a-Noplp) or anti-Myc (a-Myc) antibody followed by Texas red (TR) and
DAPI staining. Both primary antibodies are mouse monoclonal antibodies;
therefore, cells were labelled independently.
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occur before dimethylation, they cannot be directly dependent
on the presence of the modification. This conclusion was sup-
ported by the observation that pre-rRNAs containing the G,
G,,50 mutations, which cannot be dimethylated, can be pro-
cessed at sites A; and A,. We concluded that the Dimlp
protein, rather than the modification itself, was required for
pre-rRNA processing (26).

Our interpretation was that a quality control system proba-
bly inhibited the processing of the pre-rRNA in the absence of
Dimlp (26). However, the data left open the alternative pos-
sibility that Dim1p had an additional function and was directly
required for pre-rRNA processing. During the course of this
work, this question was unexpectedly resolved. When tran-
scription of an rDNA unit is driven by an RNA Pol II PGK
promoter, the pre-rRNAs produced are largely insensitive to
diml-1 and dimI-9 mutations that strongly inhibit processing
of pre-rRNAs transcribed from the chromosomal rDNA driven
by RNA Pol I. This phenomenon is not allele specific: the PGK-
transcribed pre-rRNAs are also resistant to genetic depletion
of Dimlp. Moreover, the otherwise identical pre-rRNA tran-
scribed from a GAL promoter was not resistant to the diml1-1
or dimI-9 mutations. These observations demonstrate that
Dimlp does not have a direct role in pre-rRNA processing.

We speculate that a repression system blocks pre-rRNA pro-
cessing in the absence of the binding of Diml1p to pre-rRNA.
According to this model, Dim1p normally binds to pre-rRNA
in the nucleolus at an early stage in ribosome synthesis, and a
component of the processing machinery senses this interaction.
This could occur through direct interaction with Dimlp or
through an interaction with preribosomal particles (a confor-
mational change could be monitored). Cleavages at sites A,
and A, occur in the nucleolus; consistent with this, Dim1p was
shown to localize mostly to this cellular compartment. If Dim1p
has bound to pre-rRNA, processing at sites A, and A, pro-
ceeds; otherwise, processing is blocked. In mutant strains that
lack Dim1p, this leads to the synthesis of a dead-end interme-
diate, the 22S pre-rRNA, and prevents synthesis of the 18S
rRNA. In wild-type strains, pre-rRNA processing is presum-
ably only delayed until Dimlp finds and binds to its target,
preventing the formation of mature but nonmodified 18S
rRNA. This is desirable since, as shown here, the unmodified
ribosomal subunits are impaired in function.

The pre-rRNAs that are transcribed from the PGK pro-
moter are very likely to be associated with a different set of
hnRNP proteins than are the Pol I transcripts. We speculate
that one of these occupies the Diml1p binding site and is de-
tected by the pre-rRNA processing machinery as Dim1p, thus
alleviating the need for authentic Dim1p.

The mSAmSA modification is highly conserved and is pres-
ent in both bacteria and eukaryotes. In ksg4 mutant strains of
E. coli that lack dimethylation, growth is mildly impaired and
the nondimethylated ribosomes show defects in translation in
vitro (reviewed in reference 45). Expression of Dim1p in E. coli
restores dimethylation, and E. coli KsgAp is highly homolo-
gous to Dimlp. However, while bacteria lacking the KsgAp
methyltransferase synthesize the unmodified rRNA, eukary-
otes have evolved a regulatory system to prevent this. We
anticipate that many such quality control mechanisms act to
coordinate the numerous steps of eukaryotic pre-rRNA process-
ing, rRNA modification, and ribosome assembly.
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