Table 3.
Evaluation benchmark, real faults: the Fault Type can be real (R) or artificial (A); Source shows the dataset of origin; SO Post # / Subject shows ID from the dataset of origin; the models are divided into two groups of classification (C) or regression (R) task
| Fault | Id | SO Post # | Source | Task | Faults |
|---|---|---|---|---|---|
| Type | /Subject | ||||
| R | D1 | 31880720 | DeepFD | C | Wrong activation function (7) |
| R | D2 | 41600519 | DeepFD | C | Wrong optimiser | Wrong batch size |
| Wrong number of epochs | |||||
| R | D3 | 45442843 | DeepFD | C | Wrong optimiser | Wrong loss function |
| Wrong batch size | Wrong activation function (0,1) | |||||
| Wrong number of epochs | |||||
| R | D4 | 48385830 | DeepFD | C | Wrong activation function (0,1) |
| Wrong loss function | Wrong learning rate | |||||
| R | D5 | 48594888 | DeepFD | C | Wrong number of epochs | Wrong batch size |
| R | D6 | 50306988 | DeepFD | C | Wrong learning rate | Wrong number of epochs |
| Wrong loss function | Wrong activation function (1) | |||||
| R | D7 | 51181393 | DeepFD | R | Wrong learning rate |
| R | D8 | 56380303 | DeepFD | C | Wrong optimiser | Wrong learning rate |
| R | D9 | 59325381 | DeepFD | C | Wrong data preprocessing |
| Wrong activation function (5,6) | Wrong batch size | |||||
| R | D10 | 024 | Defect4ML | R | Wrong optmiser | Wrong number of epochs |
| Missing validation set | |||||
| R | D11 | 068 | Defect4ML | C | Wrong activation function (7) |
| R | D12 | 098 | Defect4ML | C | Wrong data preprocessing |
| R | D13 | 099 | Defect4ML | C | Missing layer | Wrong number of neurons (0) |
| Wrong activation function (1) | |||||
| R | D14 | 48221692 | DeepLocalize | R | Wrong activation function (1) |
| R | D15 | 50079585 | DeepLocalize | C | Wrong number of neurons (13) | Wrong loss function |
| Wrong activation function (14) | |||||
| Wrong data preprocessing | |||||
| R | D16 | kerasma | DeepLocalize | C | Wrong number of neurons (1) |