Skip to main content
. 2025 Jun 10;30(5):124. doi: 10.1007/s10664-025-10657-7

Table 3.

Evaluation benchmark, real faults: the Fault Type can be real (R) or artificial (A); Source shows the dataset of origin; SO Post # / Subject shows ID from the dataset of origin; the models are divided into two groups of classification (C) or regression (R) task

Fault Id SO Post # Source Task Faults
Type /Subject
R D1 31880720 DeepFD C Wrong activation function (7)
R D2 41600519 DeepFD C Wrong optimiser | Wrong batch size
Wrong number of epochs
R D3 45442843 DeepFD C Wrong optimiser | Wrong loss function
Wrong batch size | Wrong activation function (0,1)
Wrong number of epochs
R D4 48385830 DeepFD C Wrong activation function (0,1)
Wrong loss function | Wrong learning rate
R D5 48594888 DeepFD C Wrong number of epochs | Wrong batch size
R D6 50306988 DeepFD C Wrong learning rate | Wrong number of epochs
Wrong loss function | Wrong activation function (1)
R D7 51181393 DeepFD R Wrong learning rate
R D8 56380303 DeepFD C Wrong optimiser | Wrong learning rate
R D9 59325381 DeepFD C Wrong data preprocessing
Wrong activation function (5,6) | Wrong batch size
R D10 024 Defect4ML R Wrong optmiser | Wrong number of epochs
Missing validation set
R D11 068 Defect4ML C Wrong activation function (7)
R D12 098 Defect4ML C Wrong data preprocessing
R D13 099 Defect4ML C Missing layer | Wrong number of neurons (0)
Wrong activation function (1)
R D14 48221692 DeepLocalize R Wrong activation function (1)
R D15 50079585 DeepLocalize C Wrong number of neurons (13) | Wrong loss function
Wrong activation function (14)
Wrong data preprocessing
R D16 kerasma DeepLocalize C Wrong number of neurons (1)