Table 1.
The summary of classification measures, including accuracy, AUC (area under the curve), F1 scores, and precision scores, achieved by four different classification methods: linear discriminant analysis (LDA), support vector machine (SVM), K-nearest neighbour (KNN), and artificial neural network (ANN)
| Pre-treatment/Feature selection | CV-validation | Test | AUC | F1 | Precision | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| LDA | A | B | A | B | ||||||
| Raw | 0.78 | 0.70 | 0.79 | 0.70 | 0.63 | 0.68 | 0.77 | |||
| SNV | 0.83 | 0.90 | 0.91 | 0.79 | 0.72 | 0.76 | 0.86 | |||
| PCA(3pc) | 0.70 | 0.90 | 0.79 | 0.67 | 0.54 | 0.63 | 0.79 | |||
| ANN | Raw | 0.80 | 0.70 | 0.85 | 0.76 | 0.78 | 0.80 | 1.00 | ||
| SNV | 0.81 | 0.80 | 0.83 | 0.78 | 0.75 | 0.80 | 1.00 | |||
| PCA(3pc) | 0.95 | 0.95 | 0.69 | 0.67 | 0.55 | 0.70 | 1.00 | |||
| KNN | Raw | 0.76 | 0.80 | 0.84 | 0.69 | 0.62 | 0.64 | 0.66 | ||
| SNV | 0.78 | 0.70 | 0.81 | 0.74 | 0.68 | 0.76 | 1.00 | |||
| PCA(3pc) | 0.73 | 0.90 | 0.80 | 0.72 | 0.59 | 0.70 | 0.95 | |||
| SVM | Raw | 0.83 | 0.60 | 0.89 | 0.86 | 0.83 | 0.92 | 1.00 | ||
| SNV | 0.95 | 0.90 | 0.94 | 0.93 | 0.86 | 0.88 | 0.95 | |||
| PCA(3pc) | 0.78 | 0.85 | 0.81 | 0.76 | 0.66 | 0.76 | 1.00 | |||
In this table, A and B refer to two different classes, respectively, for healthy sample and infested ones
Bold values demonstrate the best performance model