Skip to main content
. 2025 Jun 10;132(3):109. doi: 10.1007/s41348-025-01100-6

Table 1.

The summary of classification measures, including accuracy, AUC (area under the curve), F1 scores, and precision scores, achieved by four different classification methods: linear discriminant analysis (LDA), support vector machine (SVM), K-nearest neighbour (KNN), and artificial neural network (ANN)

Pre-treatment/Feature selection CV-validation Test AUC F1 Precision
LDA A B A B
Raw 0.78 0.70 0.79 0.70 0.63 0.68 0.77
SNV 0.83 0.90 0.91 0.79 0.72 0.76 0.86
PCA(3pc) 0.70 0.90 0.79 0.67 0.54 0.63 0.79
ANN Raw 0.80 0.70 0.85 0.76 0.78 0.80 1.00
SNV 0.81 0.80 0.83 0.78 0.75 0.80 1.00
PCA(3pc) 0.95 0.95 0.69 0.67 0.55 0.70 1.00
KNN Raw 0.76 0.80 0.84 0.69 0.62 0.64 0.66
SNV 0.78 0.70 0.81 0.74 0.68 0.76 1.00
PCA(3pc) 0.73 0.90 0.80 0.72 0.59 0.70 0.95
SVM Raw 0.83 0.60 0.89 0.86 0.83 0.92 1.00
SNV 0.95 0.90 0.94 0.93 0.86 0.88 0.95
PCA(3pc) 0.78 0.85 0.81 0.76 0.66 0.76 1.00

In this table, A and B refer to two different classes, respectively, for healthy sample and infested ones

Bold values demonstrate the best performance model