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ABSTRACT 

T h e  sampling distributions of several statistics that measure the association 
of alleles on gametes (linkage disequilibrium) are estimated under a two-locus 
neutral infinite allele model using an efficient Monte Carlo method. An often 
used approximation for the mean squared linkage disequilibrium is shown to 
be inaccurate unless the proper statistical conditioning is used. T h e  joint dis- 
tribution of linkage disequilibrium and the allele frequencies in the sample is 
studied. This estimated joint distribution is sufficient for obtaining an approx- 
imate maximum likelihood estimate of C = 4Nc,  where N is the population 
size and c is the recombination rate. It has been suggested that observations 
of high linkage disequilibrium might be a good basis for rejecting a neutral 
model in favor of a model in which natural selection maintains genetic varia- 
tion. I t  is found that a single sample of chromosomes, examined at  two loci 
cannot provide sufficient information for such a test if C < 10, because with 
C this small, very high levels of linkage disequilibrium are not unexpected 
under the neutral model. In samples of size 50, it is found that, even when C 
is as large as 50, the distribution of linkage disequilibrium conditional on the 
allele frequencies is substantially different from the distribution when there is 
no linkage between the loci. When conditioned on the number of alleles at  
each locus in the sample, all of the sample statistics examined are  nearly in- 
dependent of 6 = 4 N p ,  where p is the neutral mutation rate. 

T has been suggested that the correlation of alleles on gametes (linkage I disequilibrium) may be a sensitive indicator of the action of natural selection 
(LEWONTIN 1964, 1974). It is known from the analysis of multilocus models 
that selection can produce strong correlations among alleles at different loci, 
even without strong epistatic interactions (FRANKLIN and LEWONTIN 1970). 
Unfortunately, the distribution of linkage disequilibrium has not been well 
characterized under models without selection. This has made it difficult to 
interpret observations from natural populations. Both hypothesis testing and 
estimation require better knowledge of the sampling distribution of linkage 
disequilibrium than is currently available. To learn more about the distribution 
of linkage disequilibrium a series of Monte Carlo simulations was carried out 
using a neutral model which is relevant for interpreting observations on natural 
populations. The results of those simulations are reported here. 
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STATISTICAL QUANTITIES TO BE STUDIED 

The model considered is a two-locus Wright-Fisher infinite allele model with 
random union of gametes (KARLIN and MCGRECOR 1968). In this model gen- 
erations are discrete, population size is constant and multinomial sampling with 
mutation and recombination produce succeeding generations. It is assumed 
that no population subdivision occurs. Some properties of linkage disequilib- 
rium are known for this model and will be briefly reviewed here. See EWENS 
(1979) for a detailed description of the model and a more complete review of 
earlier work. Under this model many alleles may be present at each of the 
loci. Label the alleles at one locus A , ,  A2 . . . and the alleles at the other locus 
B , ,  B2 . . . . The most common measure of the association of A, with B, on 
gametes is: 

wheref;, is the population frequency of AiB, gametes, pi is the frequency of 
the Ai allele and qj is the frequency of the B, allele. The expected value of the 
statistic 

D2 = cc D t  

is known for the model just described and the related k allele model (HILL 
1976; GRIFFITHS 1981; TAKAHATA 1982). E(D2) is a function of 0 = 4 N p  and 
C = 4Nc, where N is the diploid population size, p is the neutral mutation rate 
at each locus and c is the recombination rate between the two loci. Recently, 
GOLDINC and STROBECK (1983),  using a numerical method, found that the 
variance of D2 can be quite large. This led them to doubt the usefulness of 
D2 as a test statistic. Other statistics that have been used to measure the 
association of alleles on gametes are: 

where 

and 

where 

min[p,q,, ( 1  - p J ( 1  - q,)] if D,, < 0 
Dm = {min[(l - p l ) q j ,  p , ( l  - q j ) ]  otherwise. 

The expectation of r 2  is not known, but it has been suggested that the 
standard linkage disequilibrium squared, U: = E(D2)/E(( 1 - FA)(  1 - F B ) ) ,  would 
closely approximate the expectation of r 2  (OHTA and KIMURA 1969, 1971; 
KIMURA and OHTA 1971; HILL 1975). For the model being considered, can 
be calculated using equation (10)  by HILL (1975).  MARUYAMA (1982) used 
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simulations to estimate E ( r 2 )  and showed that a$ can differ substantially from 
E ( r 2 ) .  The statistic D,'J was introduced by LEWONTIN (1964). Unlike D,, and 
T,,, the range of values that D:, can take is not dependent on PI or 4,. When 
there are two alleles at each locus and no recombination takes place, D,'J is 
always 1 or -1. 

The statistics D 2 ,  DtJ ,  T , ~  and D,'J are defined in terms of population fre- 
quencies of alleles and gametes and, thus, are not directly observable in prac- 
tice. For hypothesis testing and estimation, it is the distribution of sample 
statistics that must be characterized. Sample statistics analogous to the popu- 
lation statistics defined in (1)-(5) are the focus of this study. The following 
notation will be used. Sample statistics are designated with a tilde (-) above 
the symbol. The number of alleles in the sample at the A locus is denoted L A ;  

the number of alleles at the B locus is &. It is convenient to number the alleles 
in order of decreasing frequency in the sample, so that $1 L $2 L . . . and 
G I  L L . . . . With this labeling, f i l l  is the sample disequilibrium between 
the two most frequent alleles in the sample. The sample size is denoted n. 
Several joint and conditional distributions are considered. To simplify notation, 
the following convention is adopted. For any collection of random variables, 
x, y, . . . and events A, B, . . . , the joint distribution of the random variables 
x, y, . . . and the events A,  B, . . . is referred to as the distribution of (x, y, 
. . . ; A, B,  . . .). The distribution of the random variables x, y, . . . condi- 
tional on the events A,  B, . . . is referred to as the distribution of (x, y, . . . ( A ,  
B ,  . . .). For example, the distribution of (?*; LA = LB = 2, $1 I 0.95, i l  5 
0.95) refers to the joint distribution of i2  and the events LA = kB = 2, 
$1 5 0.95 and i1 5 0.95. The distribution of i2  conditional on LA = LB = 2 is 
referred to as the distribution of ?' I LA = & = 2. The expectation of a random 
variable, x is denoted E ( x ) .  The expectation of x conditional on A, B, . . . is 
denoted E ( x  I A, B, . . .). Estimates of these expectations, obtained from Monte 
Carlo simulations are denoted X and X I A, B, . . . , respectively. 

Even less is known about the sample statistics ?*, ill ,  D 2 ,  dll  and bi, than 
about the analogous population statistics. Recently, however, GOLDINC (1 984) 
has used a numerical method to obtain the distribution of (El1; gA = LB = 2) 
and ( i l l ;  LA = LB = 2) for C = 0 and C = w. 

The primary objective of this study is the estimation of the distributions of 
the sample statistics i*, d2, i l l ,  f i l l  and Dil  for several levels of recombination. 
Because many loci in natural populations exhibit only two alleles in samples, 
most of the distributions considered are conditional on, or jointly with, kA = 
gB = 2. Also, in some studies of linkage disequilibrium in natural populations 
(e.g., LANGLEY, TOBARI and KOJIMA 1974), monomorphic loci or nearly mon- 
omorphic loci are not considered. This is reasonable since monomorphic loci, 
or nearly monomorphic loci, provide little or no information concerning the 
amount of association between alleles at different loci. But to interpret the 
observations made in such studies requires that one consider the distributions 
of sample statistics conditional on minimal levels of polymorphism in the sam- 
ple. This motivated - the estimation - of the distributions of statistics conditional 
on, or jointly with, h~ = h~ = 2, $1 5 0.95, and i l  I 0.95. Also, to investigate 
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the possibility that more information could be obtained from a sample by 
considering the joint distribution of linkage disequilibrium and the allele fre- 
quencies in the sample, the distribution of (fi l l ,  f i l ,  il; LA = 6 = 2) was esti- 
mated for several levels of recombination and several combinations of values 
of fil and i1. 

A formula for the expectation of the sample statistic D' is derived in the 
APPENDIX. The expectation of D' and E(D')  are compared for a range of 
parameter values. For several parameter combinations the following expecta- 
tions were estimated with Monte Carlo simulations: E(D*), E ( b 2  I L A  = & = 
2), E ( D ' l k A  = Kg = 2, f i i  5 0.95, i i  I 0.95), E(;'), E(F'l&A = & = 2) and 
E(?' 1 i~ = 6 = 2, f i 1  5 0.95, i1 5 0.95). In addition, estimates were obtained 
of the distributions of the following: 

(a) F', 
(b) ( F 2 1 k A  = & = 2, f i 1  I 0.95, i1 5 0.95), 

(d) (F11; L A  = LB = 2, f i 1  I 0.9, 41 I 0.9), 
(c) ( F l l ;  i A  = &I = 2) 

(e) ( f i l l ;  i A  = i B  = 2), 
(0 ( f i l l ;  L A  = = 2, f i ]  I 0.9, i1 I 0.9)~ 
(g) (D 1 ;  L A  = L B  = 2), 
(h) ( f i [ 1 ;  L A  = LB = 2, f i 1  I 0.9, 41 I 0.9), 
(i) (611, f i i ,  t i ;  L A  = Z = 2). 

The estimated distributions are used to address several questions. How well is 
E(;') approximated by U: or even E(?)? How similar are the distributions of 
r', F' and (F' I LA = LB = 2, f i 1 - 5  0.95, I 0.95)? Similarly, how different are 
the distributions of ( i l l  I LA = KB = 2) and ( F l l  I LA = LB = 2, f i 1  4 0.9, i1 5 0.9)? 
The expectation of D' is strongly dependent on 8. How sensitive to 8 are the 
sample statistics when conditioned on LA = & = 2? How precise an estimate of 
C can be made with a single sample of gametes that have been examined at 
just two loci? Are measures of linkage disequilibrium likely to be useful as test 
statistics? Which statistics are most informative? 

The algorithm used to produce samples under the neutral model is briefly 
described in the next section. Estimates of the sample distributions are pre- 
sented and described in RESULTS. The implications of distributions for hypoth- 
esis testing and estimation are presented in DISCUSSION. 

SIMULATION METHODS 

The distributions of the sample statistics were estimated with a Monte Carlo 
method which is quite different from the standard method that requires that 
the entire population be represented in computer memory. With the method 
used in this study, a random sample of gametes is generated in a two-phase 
process. In the first phase, the history of the sample of gametes is generated. 
For a two-locus model, the history can be represented by two trees, one tree 
for each locus. Such a tree specifies which gametes are most closely related 
and at what time the most recent common ancestor of any pair of the gametes 
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occurred. For two linked loci the two trees are obviously correlated. The 
generation of these correlated trees is described in detail by HUDSON (1983). 
In the second phase, the numbers of mutations that occur on each branch of 
the tree are generated. Given the mutation rate and the duration of the 
branches, the numbers of mutations are generated, assuming that the numbers 
of mutations have a Poisson distribution. With the trees and the numbers of 
mutations on each branch, the allelic composition of each gamete is determined 
and any sample statistic can be calculated. This method of generating samples 
relies on the assumption that the population size (N) is large and recombination 
rate ( c )  and mutation rate (p)  are small. 

To study the distribution of some statistics a slightly different technique is 
used. The history of a sample of gametes is generated as before, but then, 
instead of generating a single sample from the given pair of trees, the entire 
distribution of the statistic is calculated conditional on that particular pair of 
trees. The distribution of the statistic is then estimated by averaging such 
conditional distributions from many such pairs of trees. To illustrate the tech- 
nique, consider the following method of estimating the distribution of 
( f i l l ;  = 6 = 2, f i 1  = p ,  41 = q ) .  T o  estimate this distribution many pairs of 
trees were generated as described before. For each pair of trees the distribu- 
tion of (Ill]; k A  = 6 = 2, fil = p ,  il = q )  conditional on that pair of trees was 
determined as follows. Notice that, if two alleles are segregating in the sample 
at locus A,  it must be the case that one branch of the A locus tree has one or 
more mutations on it, and all of the other branches have none. The branches 
of the tree were examined to determine which ones, if any, were such that 
mutations occurring on them would result in alleles in the sample at frequency 
p and 1 - p .  Denote the set of such branches B,. The probability that one or 
more mutations occur on a particular branch and none occur elsewhere on 
the tree is just  (1 - e-pt)e-p(T-t),  where t is the duration of the particular branch 
and T is the sum of the durations of all of the branches. Similarly, the B locus 
tree was examined to find those branches such that mutations occurring on 
them would result in alleles of frequency q and 1 - q. Denote this set of 
branches B,. A sample would have two alleles at each locus with the specified 
frequencies if one or more mutations occur on one of the branches of set B,, 
none occur elsewhere on the A locus tree, one or more mutations occur on 
one of the branches of set B, and no mutations occur elsewhere on the B locus 
tree. For each way that this can occur, the probability was calculated and the 
value of d l l  that would result from the mutations was ascertained. In this way 
the distribution of 611 was determined for a particular pair of trees. The 
average of such distributions over many pairs of trees is an estimate of the 
distribution of (Ill]; k A  = K, = 2, fi l  = p ,  i1 = q) .  

The computer programs were checked against several known properties of 
the two-locus model. Specifically, the programs correctly generated the ex- 
pected two-locus homozygosity (STROBECK and MORGAN 1978), the expectation 
of D 2  (see Table l),  and also the distributions of & I  and i l l  for C = 0 
(GOLDING 1984). 

Listings of programs to produce samples of gametes under the two-locus 

* *  

* *  



61 6 R. R. HUDSON 

TABLE 1 

Expected linkage disquilibrium in populations, in samples and in samples conditional 
on segregation 

Theoretical" Simulation means 

0 C E ( D z )  n = 50 n = 50 n = 50 n = 100 n = 50 n = 100 

0.02 

0.1 

0.2 

0.4 

0 
2 

10 
20 

0 
2 

10 
20 

0 
2 

10 
20 

0 
2 

10 
20 

0.0002 1 
0.000095 
0.00003 1 
0.000017 

0.0040 
0.0019 
0.00065 
0.00036 

0.012 
0.0062 
0.0022 
0.0012 

0.029 
0.016 
0.0061 
0.035 

0.00021 
0.000099 
0.000037 
0.000024 

0.0040 
0.0020 
0.00079 
0.0005 1 

0.012 
0.0064 
0.0026 
0.0017 

0.029 
0.017 
0.0074 
0.0049 

0.000 19 
0.0001 
0.000033 
0.000024 

0.0038 
0.0020 
0.00076 
0.00049 

0.012 
0.0063 
0.0025 
0.001 7 

0.029 
0.017 
0.0073 
0.0049 

0.025 
0.012 
0.0048 
0.0030 

0.024 
0.013 
0.0048 
0.0030 

0.025 
0.013 
0.0049 
0.0033 

0.023 
0.012 
0.0049 
0.0030 

0.019 
0.0093 
0.0036 
0.0021 

0.0 18 
0.0095 
0.0034 
0.0018 

0.017 
0.0094 
0.0035 
0.0021 

0.054 
0.028 
0.01 1 
0.0068 

0.055 
0.028 
0.010 
0.0065 

0.055 
0.028 
0.01 1 
0.0066 

0.054 
0.03 
0.01 1 
0.0069 

0.050 
0.025 
0.0090 
0.0051 

0.050 
0.025 
0.0091 
0.0051 

0.050 
0.026 
0.0091 
0.0052 

0.05 1 
0.026 
0.0093 
0.0053 

E ( D 2 )  calculated with equation (10) from HILL (1975); E(d2) calculated with (A7)-(A10) from 
the APPENDIX. 

neutral model are available on request. The programs are written in the pro- 
gramming language C. 

RESULTS 

Table 1 shows E(D2) ,  E ( k Z )  and 5' for several combinations of 8, C and 
sample size. E(D') is calculated using the formula of HILL (1975). E ( f i * )  is 
calculated using a formula derived in the APPENDIX. For these parameter val- 
ues, E(D') differs only slightly from E(d2). 6' is the mean value of D z  in a 
large number of computer-generated samples. f i z  is shown only to indicate 
that the computer program works correctly. Also show? are estimates of two 
conditional expectations, E(d' I &A = k", = 2) and E ( D z  I k A  = &B = 2, f i 1  5 0.95, 
5 0.95). Table 1 shows that conditioning on minimum levels of polymor- 

phism can increase the mean value of b' greatly. Also note that the conditional 
expectations of i' are quite ins+tiye to 8.  

Table 2 shows a;, r"' and ( F 2  I k A  = k,  = 2, f i 1  5 0.95, 4 1  5 0.95). Also shown 
are estimates of E(?) taken from table 2 of MARUYAMA (1982). As Maruyama 
pointed out IT; is not always a good predictor of E(r') .  The results in Table 2 
demonstrate that E(?') in not well predicted by either E(?) or U;.  For ex- 
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0.57 0.35 0.21 

A? r2(  k,=k,=2, i j ,  < 0.95, q, < 0.95 r 
FIGURE 1.-A comparison of the distribution of the population statistic r 2  and the distributions 

of the two sample statistics i2  and i2  conditional on LA = k ,  = 2, p ,  < 0.95 and i l  < 0.95. For all 
three distributions 0 = 0.1 and C = 0.2. The sample statistics are for samples of size 100. The  
distribution of r2  is taken directly from figure 5 of MARUYAMA (1982). The mean values of the 
statistics are shown by the small arrows along the horizontal axis. 

ample, when C = 2 and I3 = 0.1, then U$ = 0.22, F 2  = 0.028, and for n = 
100, r"* = 0.10. Table 2 shows that the expectation of i2  is substantially 
increased when conditioned on PI 5 0.95 and 41 5 0.95. For C = 2, and n = 
100, the mean of ( i2 I &, = k", = 2, 5 0.95, $1 5 0.95) is approximately 0.20. 
The conditional expectation of i 2  appears to be quite insensitive to 8. 

The distributions of r2 ,  i' and (illA = LB = 2, P I  I 0.95, 41 5 0.95) are 
compared in Figure 1 for I3 = 0.1 and C = 0.2. The distribution of r 2  is from 
MARUYAMA (1982). The estimated mean values of these statistics are 0.10, 
0.17 and 0.35, respectively. The three statistics differ considerably in their 
probabilities of taking values near 0 and 1. The estimated probabilities of 
taking a value less than 0.05 are 0.8, 0.57 and 0.35 for r2 ,  i2 and (i211A = 
& = 2, PI 5 0.95, 4 1  5 0.95), respectively. The probabilities of a value greater 
than 0.95 are 0.02, 0.04 and 0.21 for r 2 ,  F 2  and (i21iA = = 2, P I  5 0.95, 
$ 1  5 0.95), respectively. 

Figures 2-4 show the distributions of (611; LA = LB = 2), ( i l l ;  LA = LB = 2), 
and ( E ; ] ;  LA = K", = 2), respectively, for samples of size 50 and I3 = 0.1. For 
C = 0, GOLDING (1984) obtained the distributions of f i l l  and i l l  for these 
same parameter values. (Golding actually considers the linkage disequilibrium 
between the alleles present on the most frequent type of gamete rather than 
between the two most frequent alleles. The resulting distributions are only 
slightly different.) Also shown in Figures 2-4 are the distributions with PI 5 
0.9 and 5 0.9. 

Figure 2 shows that, for all levels of recombination, the distribution of dl,  
has a large peak at f i l l  -0.01. For C = 0, small positive values of 611 are 
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0.010 

0.005 

-0.25 0.00 0.25 

0.020 

0.015 

0 0.010 
D 

a 
0.005 

-0.25 0.00 0.25 

or 

and 

-0.2s 0.00 0.25 

-0.25 0.00 0.25 

FIGURE 2.-Estiniates of the distribution of 61, at four levels of recombination ( R  = 0.1, R = 
50). The total height of each column indicates the probability that LA = kfl = 2 and d1, takes a 
value in the interval covered by the base of !he column. The heights of the solid black columns 
indicate the estimated probability that L A  = k B  = 2, f i ,  5 0.9, 5 0.9 and 611 belongs to the 
indicated interval. For R = 0.1 and R = 50, the probabilities of kA = & = 2 were estimated to be 
0.085, 0.83, 0.084 and 0.083 for C = 0, C = 5, C = 20 and C = m, respectively. The probabilities 
of ( k A  = k ,  = 2, f i ,  5 0.9 and il 5 0.9) are approximately 0.026, 0.023, 0.023 and 0.022 for 
C = 0, 5, 20 and 00, respectively. 

-~ 

very unlikely, but there is a substantial tail on the distribution that extends 
out to f i l l  = 0.25. As the recombination rate increases, the long tail disappears 
and the small gap in the distribution just to the right of 0 gradually fills in. If 
only samples with f i 1  5 0.9 and 4 1  5 0.9 are considered, the distributions are 
quite different. For C = 0, the large peak just to the left of 0 is almost 
completely eliminated, leaving a much more broadly distributed statistic with 
the tail to the right being a much more significant part of the distribution. 

Figure 3 shows that the distribution of i l l ,  like the distribution of f i l l ,  shows 
a large peak just to the left of 0 for all levels of recombination. For C = 0, 
i l l  is very likely to be either 1 or a small negative number. Small positive 
values are very unlikely. As recombination rates increase, the large probability 
mass at 1 disappears and the gap to the right of 0 fills in. Again, the distri- 
butions among samples with 5 0.9 and 4 1  5 0.9 are quite different. For 
such samples, with C = 0, there is no large peak just to the left of 0, whereas 
the large probability mass at = 1 remains. 



620 R. R. HUDSON 

-1 0 i 
0.020 1 

-1 0 1 

-1 0 1 

-1 0 i 

or 

and 

FIGURE 3.-Estimates of the distribution of i t 1  at four levels of recombination (0 = 0.1, n = 
50). The total height of each column indicates the probability that i,, = & = 2 and i l l  takes a 
value in the interval covered by the base of :he column. The heights of the solid black columns 
indicate the estimated probability that i,, = kB -- 2, f i t  5 0.9, $ 5!.9 and i l l  belongs to the 
indicated interval. For 8 = 0.1 and n = 50, the probabilities of kA = kB = 2 were estimated to be 
0.085, 0.83, 0.084 and 0.083 for C = 0, C = 5, C = 20 and C = 00, respectively. The probabilities 
of (LA = & = 2, PI C 0.9 and $1 1 0.9) are approximately 0.026, 0.023, 0.023 and 0.022 for C 
= 0, 5 ,  20 and 00, respectively. 

The distribution of D i 1  is shown in Figure 4. For C = 0 and L A  = = 2, 
the absolute value of d{1 is always 1. As C increases the probability of inter- 
mediate values of dil increases, as shown in Figure 4. Even with C very large, 
the probability that ldil I equals 1 is substantial. For C = a, n = 50 and 
conditional on LA = LE = 2, the probability that I f i i l  I equals 1 is 0.62. How- 
ever, if one considers only samples with p1 i 0.9 and 41 5 0.9, then the 
conditional probability is 0.09. 

For samples of size 50 and 0 = 0.1, estimated distributions of 
( f i l l ,  $ 1 ,  t1; = = 2) are shown in Figure 5 for six different ( $ 1 ,  41)  pairs 
and seven different recombination rates. Note that the vertical scale is not the 
same throughout the figure. Also, the horizontal scale is different for each 
specified (jl, 41). In each case the interval shown on the horizontal axis is 
from D, = -(1 - Bl)(l - ijl) to Db = (1 - pl) i l .  Given p1 and @ I ,  d11 is 
necessarily in the closed interval [D, ,  Db]. 
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FIGURE 4.-Estimates of the distribution of d ; ~  at four levels of recombination (0 = 0.1, n = 
50). The total height of each column indicates the probability that = 2 and f i l l  takes a 
value in the interval covered by the base of the column. The heights of the solid black columns 
indicate the estimated probability that LA = i s  = 2, f i l  5 0.9, < I  5 9.9 and d ; ~  belongs to the 
indicated interval. For 0 = 0.1 and n = 50, the probabilities of LA = ks = 2 were estimated to be 
0.085, 0.83, 0.084 and 0.083 for C = 0, C = 5, C = 20 and C = 00, respectively. The probabilities 
of ( k ~  = k~ = 2, P I  5 0.9 and < I  50 .9 )  are approximately 0.026, 0.023, 0.023 and 0.022 for C = 
0, 5,  20 and m, respectively. 

= 

. .  

For PI 5 0.8 and 41 5 0.8, the distributions of ( f i l l  !PI ,  i 1 ,  LA = & = 2) 
(which are easily obtained from the distributions in Figure 5 )  can be described 
as follows for different values of C. For C = 0, Dll equals either D, or 
Db (I f i i l  I = 1). For C < 2, the conditional distribution of f i l l  remains strongly 
U shaped, with most of the probability mass at D, and Db. For 2 < C < 10, 
the distribution of f i l l  is fairly uniform over the interval [Da ,  Db]. For C = 20, 
the distribution is unimodal but has considerably higher variance than the 
distribution with C = 03. For C = 50, the distribution of f i l l  is close to the 
C = distribution but still has significantly more probability mass in the tails 
of the distributions than for C = W. 

For some recombination rates, for example C = 5 ,  the distribution of 
( f i l l  ] P I ,  41,  LA = LB = 2) appears to be fairly insensitive to the specified value 
of ( P I ,  G I ) .  It is important to recall, however, that the horizontal scale is 
different for each ( f l ,  4]). Also, for tight linkage, there appear to be three 
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pi=0.80 pi = 0.8 pi = 0.7 pi = 0.70 pi = 0.7 PI = 0.80 
q1 = 0.78 qi = 0.8 ql= 0.7 q1 = 0.68 q1 = 0.6 q1 =i 0.58 

- 
D l l  

FIGURE 5.-Estimates of the joint distribution of Ell ,  PI _and il (0 = 0.1, n = 50). Height of 
each column gives an estimate of the probability of ( R  = ks = 2, PI = P I ,  & = 4 2  and D 6 I ) ,  
where pl and 4 2  are the frequencies indicated at  the top of the figure, and where I is the interval 
at  the base of the column. D, is -(I - PI)(l - il), and Dg is (1 - j l ) i l .  Notice that both the 
horizontal and vertical scales differ from one histogram to the next. The  histograms for C = m 
are exact results using the sampling theory for one locus (EWENS 1972) to obtain the probability 
of the allele frequencies and assuming complete independence of loci for determining the distri- 
bution of the alleles on gametes. 

situations that lead to quite distinct distributions of ( f i l l  IP1, 4 1 ,  LA = LB = 2), 
namely, fil equal to G l ,  f i l  nearly equal to and f i 1  quite different from il. 
These three cases are illustrated in Figure 5 by ( P I ,  6 1 )  equal to (0.7, 0.7), 
(0.7, 0.68) and (0.7, 0.6), respectively. When $1 is not equal to G I  the condi- 
tional expectation of f i l l  is close to 0. For example, with (81, 4 1 )  = (0.7, 0,6) 
and C = 0, f i l l  equals -0.12 with probability 0.6, approximately, and Dll 

equals 0.18 with probability 0.4 approximately, so the approximate conditional 
mean of 5 is 0. When $1 is nearly equal to i 1 ,  the conditional expectation of 
f i l l  is similarly close to 0 when C = 0. But when f i l  = 41 and C = 0, the 
conditional expectation of f i l l  is nearly equal to f i b ,  the maximum possible 
value of f i l l  consistent with f i 1  and i 1 .  For example, when ( P I ,  4 1 )  = (0.7, 0.7), 
the estimated conditional probabilities that f i l l  equals -0.09 and 0.21 are 0.04 
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and 0.96, respectively, which implies an estimated conditional mean of 6 1 1  

equal to 0.20. For PI = jl, the conditional expectation of 611 decreases steadily 
as C increases. For C = 5, the expectation of 611 conditional on ( f l ,  Qll) = 
(0.7, 0.7) is approximately 0.03. For $1 quite different from 4 1 ,  the conditional 
expectation of f i l l  also decreases as C increases. But when f i l  is nearly equal 
to il, the probability that f i l l  = Db increases initially as C increases from 0.  
The result is that the conditional expectation of i l l  actually increases with 
increasing C. For C = 0 and (81, 41) = (0.7, 0.68), the conditional expectation 
of iI is 0.003, whereas for C = 1, the conditional expectation is approximately 
0.09 (Db is 0.204). This conditional expectation of f i l l  does not increase in- 
definitely with increasing C, in fact, it begins decreasing when C equals ap- 
proximately 1. For C = 2, this conditional expectation of 611 is approximately 
0.08; for C = 5, the expectation is about 0.03. 

No cases in which PI > 0.8 and/or i1 > 0.8 are shown in Figure 5, but 
results not shown indicate that the extreme values of f i l l  (where I 6il I = 1) 
can have substantial probabilities of occurring for these allele frequencies even 
if C = W. 

In Figure 6, the conditional distribution of f i l l  for n = 20, 50 and 100 are 
compared. For C = 5 and C = 10, the sample size has little effect. At higher 
levels of recombination, the larger samples differ in having lower probabilities 
for the extreme values of 6 1 1 .  

Figure 7 shows that the distribution of Dll  conditional on the allele fre- 
quencies is quite independent of 8, at least for 8 between 0.02 and 0.2. 

DISCUSSION 

Inferences about C: Several authors have estimated C or N using the statistic 
i' (LANGLEY 1977; LAURIE-AHLBERG and WEIR 1979; HILL 1981). T o  obtain 
an estimate of N, Langley assumed that E(?') z 1/C + l/n, whereas Laurie- 
Ahlberg and Weir and Hill assumed that E(?') z [(l - c)' + c 2 ] / [ 2 N c ( 2  - c)] 
+ l/n, which approximately equals 1/C + l/n when c << Yz. (Throughout this 
paper, it has been assumed that c is small.) These assumed relationships be- 
tween E(?') and C clearly cannot apply when C is small, since ? is always less 
than or equal to 1. In addition, these relationships were derived for a two- 
locus model without mutation. The extent to which the behavior of models 
without mutation can be used to predict the behavior of models with mutation 
is unclear, although a;, a suggested approximation for E(?') under the neutral 
model with mutation, is also approximately equal to 1/C for C large (KIMURA 
and OHTA 1971). Table 2 shows that neither a: nor 1/C + l /n is a good 
approximation for E(?'). However, it is common practice in survey studies of 
linkage disequilibrium to eliminate from consideration those loci that are 
nearly monomorphic (see, for example, LANGLEY, TOBARI and KOJIMA 1974). 
This means that conditional expectations, such as E(P2 I LA = K", = 2, f 1  5 0.95, 
i1 5 0.95), are needed for interpreting the observations. Table 2 shows that 
a: is a fairly good approximation for E(?' I L A  = = 2, f i ~  5 0.95, 4 1  5 0.95). 
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FIGURE 6.-Comparisons of the distribution of 611 conditional on LA = LB = 2, PI = 0.7 and 
il = 0.6 for different sample sizes (0 = 0.1). Actually, the distributions for n = 100, are averages 
of estimated distributions for (PI ,  G I )  equal to (0.7, 0.6), (0.7, 0.58), (0.7, 0.62), (0.68, 0.6) and 
(0.72, 0.6). This was done to obtain a more accurate estimate with a minimum of computer time. 

Empirically, the best approximation to this conditional expectation appears to 
be: 

E(;' I k~ = = 2, f i 1  5 0.95, 9 . 1  I 0.95) U: + l/n, (6) 

where U$ is calculated using equation (10) by HILL (1975), and with 8 = 4Np 
set equal to 0.1, regardless of the true value of 8. Note that one does not need 
to know or estimate 8 to estimate C using (6). Table 2 shows that this approx- 
imation works well for all cases examined, that is, for sample sizes of 50 to 
200, for C between 0 and 20, and with 8 between 0.02 and 0.4. The condi- 
tional expectation is equally well approFimated by 1/C + l/n for C > 20. That 
U$ is a good approximation for E(f ' lhA = &I = 2, 5 0.95, 9.] I 0.95) may 
be somewhat fortuitous, however, since other simulation results, shown in Fig- 
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FIGURE 7.-Comparisons of the distribution of dl, conditional on k,, = ke = 2, PI = 0.8 and 
= 0.7 for different values of 8(n = 50). Evidently there is little dependence of this conditional 

distribution on 8.  Simulations with other values of PI  and G I  indicate that this result holds more 
generally. 

ure 8, indicate U: is not a good approximation for E ( i 2  I LA = LE = 2, PI 5 0.9, 
il 5 0.9) or E ( i 2  I i A  = 5 0.975) when linkage is tight. 

Given an adequate approximation to the conditional mean of i2, equation 
(6), we now address the question: Assuming that the neutral model is correct, 
how much information about C can be obtained from a single sample for which 
fi l l ,  PI and are measured? Examination of Figure 3 shows that i l l  alone, 
without considering it jointly with and tl,  will not generally be very inform- 
ative about C. This is clear since there is a large overlap of the distribution of 
i l l  with C = 0 and the distribution with C = W. Small negative values of i l l  

are very likely for all values of C. Similarly, Figures 2 and 4 show that 6 1 1  

and f i i l  are not very informative about C when the frequencies, PI and il, are 
not considered. Now consider the use of the joint distribution of ( f i l l ,  PI,  41; 

LA = iE = 2) for making inferences about C. Examination of Figure 5 reveals 
that any observed value of f i l l  is compatible with values of C between 2 and 
10. For C in this interval, f i l l  is very broadly distributed over the interval ED,, 
Ob]. (Recall, D, = -(1 - PI)(1 - il) is the minimum possible value of f i l l  given 
PI and Q1. And Db = (1 - F l ) i l  is the maximum possible value of f i l l  given PI 
and i l . )  However, very small and very large values of C can be ruled out by 
certain observed values of 6 1 1 .  If the observed value of f i l l  were near D, or 
Db, then one could rule out very large values of C. For example, if one 
observed ( f i l l ,  P I ,  4]) = (0.164, 0.7, 0.68) in a sample of 50 gametes, one 
could conclude that with high probability C < 20. This is because, when C = 

= 2, $1 5 0.975, 
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E(?] kA=kB=2, pi< a, q,C a) - l/n 

Cl a = 0.995 

A a = 0.975 

0 a = 0.95 

0 a = 0.90 

4Nc 
FIGURE 8.-A comparison o f E ( i 2  I &  = b = 2, 5 0, 5 a) - I/n and c2d for various values 

of a (0 = 0.1, n = 200). The  curve is U: calculated using equation (10) from HILL (1975). 

20, the probability that I f i l l  I is greater than or equal to 0.164, given $1 = 
0.7 and 4 = 0.68, is approximately 0.01, and, for all C greater than 20, the 
probability is even smaller. Recall that the distribution of f i l l  given $1 and 4 1  

is essentially independent of 8, so these conclusions can be drawn without 
precise knowledge of the value of 8. If a -value of Dl 1 near 0 were observed, 
one could rule out very small values of C. For example, the probability of 
Ifill I < 0.04 is approximately 0.03 for C = 1, given that f i 1  = 0.7 and 4 1  = 
0.68. For all C less than 1, it appears that the probability is smaller. Evidently, 
if one obtained a sample such that ( f i l l ,  $1, 41) = (-0.036, 0.7, 0.68), a con- 
clusion that C is greater than 1 is justified. In summary, a single observation, 
(fi l l ,  f i l ,  41) will typically be sufficient to establish a rather large upper bound 
on C (e.g., 20) and/or a rather small lower bound on C (e.g., 1). No more 
precise conclusions concerning C can be drawn. 

The results in Figure 5 also permit one to use an observation of f i l l ,  P I  and 
iI to obtain an approximate maximum likelihood estimate of C or, if c is 
known, of N, the population size. To illustrate this, the estimated probability 
of ( f i l l ,  P I ,  i l )  = (0.08, 0.8, 0.6) as a function of C is shown in Figure 9. Seven 
of the points on Figure 9 are taken directly from Figure 5. The rest of the 
points are from simulations results not shown in Figure 5. The maximum 
likelihood estimate of C based on the observation (Dl l ,  $1,  41) = (0.08, 0.8, 
0.6) is approximately 12. For many observations the maximum likelihood es- 
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FIGURE 9.-Estimates of the probability of (Dll  = 0.08; i~ = b = 2, f i 1  = 0.8, 41 = 0.6) as a 
function of C are shown by triangles (A) (0 = 0.1, n = 50). The curve is an arbitrary smooth 
curve. An approximate maximum likelihood estimate of C based on a sample for which (fill = 
0.08; LA = & = 2, f i 1  = 0.8, 4 1  = 0.6) is 12. Evidently, C = 3 and C = 50 are not a great deal less 
likely. 

timate of C would be an extreme value, either 0 or infinity. Interestingly, the 
maximum likelihood estimate of C is often, but not always, 0 when f i l l  = Db, 
the highest possible linkage disequilibrium consistent with the allele frequen- 
cies. As shown in Figure 5 ,  for ( P I ,  4 1 )  equal to (0.8, 0.78), (0.7, 0.68) or (0.6, 
0.58) and f i l l  = Db, the maximum possible value of f i l l ,  given the allele 
frequencies, the probability of the sample is greater with C = 1 than with 
c = 0. 

A maximum likelihood estimate based on one pair of loci in a single sample 
is clearly not very informative. In the example shown in Figure 9, the maxi- 
mum likelihood estimate is approximately 12, but the likelihood of C = 3 and 
C = 50 are not a great deal smaller. However, if several pairs of loci were 
examined and each pair of loci were distant enough from the others that 
independence could be assumed, then a maximum likelihood estimate based 
on all of the pairs of loci could be obtained. Such an estimate would be very 
useful, especially if certain asymptotic properties of maximum likelihood esti- 
mators could be invoked. 

Hyflothesis testing: Now consider the equilibrium neutral model as a null 
hypothesis that we wish to test against an alternative selective hypothesis. Sup- 
pose that C is known and that the alternative hypothesis is a selective model 
under which strong linkage disequilibrium is expected. First, consider a test 
based on the distribution of 1611 I conditional on both & = gB = 2 and the 
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observed allele frequencies. If the distributions of fil and i1 were very different 
under the null and alternative hypotheses, this would not be a particularly 
powerful test, but if one wishes to base the test only on the amount of asso- 
ciation between alleles without regard to whether the allele frequencies them- 
selves are more likely under one hypothesis than the other, then this test would 
be appropriate. For what values of C can we expect to be able to reject the 
null hypothesis on the basis that I D11 I is too large to be compatible with the 
null hypothesis? Without specifying more precisely the alternative hypothesis, 
the power of the test cannot be determined but some general observations can 
be made. Figure 5 shows that for C < 10, rejection of the neutral model on 
the grounds that 1611 I is too large is very unlikely regardless of the alternative 
hypothesis. For example, with C = 5 and conditional on p l  = 0.7, and q1 = 
0.6, the probability that I fil 1 I > 0.184 is approximately 0.16. The maximum 
value of f i l l  given these allele frequencies is 0.204. For C = 10, the neutral 
model is likely to be rejected under the alternative model only if the alternative 
model is such that f i l l  is expected to take the highest possible value, given the 
allele frequencies, and the allele frequencies are not too far from 0.5. Even at 
C = 20, if under the alternative hypothesis 6 1 1  is expected to be large in 
absolute value but negative in sign, the neutral model will not be rejectable 
unless the allele frequencies are close to 0.5. For C = 50, Figure 5 shows that 
the distribution of 611 under the neutral model is getting close to the no- 
linkage distribution. In this case, if strong linkage disequilibrium is expected 
under the alternative hypothesis, the power of a test may be substantial. How- 
ever, the critical values for the test when C = 50 are still substantially different 
from the critical values under the C = 00 neutral model. For example, with 
fi l  = 0.7 and c j l  = 0.68, the probability that 1 f i l l  I is greater than 0.07 is 0.019 
for C = 00, whereas for C = 50, this probability is 0.096. Under the neutral 
hypothesis with C = 00, the power of the tests for different alternative hy- 
potheses has been discussed by BROWN (1975). 

Conclusions: The unconditional expectation of i2  is not well approximated 
by cz when linkage is tight. However, equation (6) gives a useful approximation 
for E ( i 2 1 k ~  = k~ = 2, f i l  5 0.95, 4 1  I 0.95) that applies for a large range of 
sample sizes, mutation rates and values of C. For C > 20, the approximation 
E ( i 2  I kA = k~ = 2; fil  I 0.95), 4 5 0.95) = 1/C + l/n is quite good. Although 
this conditional mean of i2 can be approximated, the distribution of i2  about 
that mean is shown to have poor statistical properties. In particular (? l l  I kA = 
LB = 2) is shown to have large variance and to be bkmodal for tight linkage. 
This motivates the study of the joint distribution of Dl l ,  f i 1 ,  41. 

Using the estimated joint distribution of f i l l ,  f i 1 ,  4 1 ,  one can obtain an 
approximate maximum likelihood estimate of C. The distribution of f i l l ,  con- 
ditional on PI and i], is shown to be very insensitive to B. It is shown that 
E ( f i l l  [ P I ,  41) is quite large when C is small and f i 1  = il. Also, if fil is nearly 
but not exactly equal to i1, then E(fiI1 Ijl, 41) is larger for C = 1 than for 
c = 0. 

This work benefited from discussions with C. AQUADRO and C. STROBECK. N. KAPLAN and C. 
AQUADRO provided valuable criticism of an earlier version of the manuscript. G. B. GOLDING 
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generously provided unpublished results which were invaluable for checking the computer pro- 
grams. 
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APPENDIX 

- 2  
I derive here an expression for the expectation of D in a sample under the two-locus neutral 

Define the following five identity coefficients: 
infinite allele model. 

@A is the probability that two gametes drawn randomly with replacement from the population are 
identical at locus A. @B is the probability that two gametes drawn randomly with replacement from 
the population are identical at locus B.  In what follows, it will be assumed that @A = @B. 6AB is the 
probability that two gametes drawn randomly with replacement from the population are identical 
at both locus A and locus B.  r A B  is the probability that, when three gametes are drawn, the second 
is identical with the first at the A locus, and the third is identical with the first at  the B locus. 
And finally, AAB is the probability that, when four gametes are drawn, the first is identical with 
the second at the A locus and the third is identical with the fourth at the B locus. 

Notice that D 2  can be written as: 

(STROBECK and MORGAN 1978). STROBECK and MORGAN (1978) provide formulas for each of these 
coefficients. Now, suppose a sample of gametes is drawn from the population. If the population 
size is large enough, it does not matter whether the sampling is done with replacement or, as is 
typical, without replacement. In what follows, it will be assumed that the probability that two 
distinct gametes in the sample are identical is @AB.  This requires that the sampling be done with 
replacement or that the population size be large enough that f;, is essentially equal to f;, - 1 / N .  
As with the population statistic, we can write d2 in terms of identity coefficients: 

E(d*) = $AB - 2 f A B  + LAB, ('47) 

where the coefficients with a tilde (-) are defined in the obvious way, in terms of the sample 
frequencies of alleles and gametes. These identity coefficients can be interpreted in the same way 
as the population coefficient except that sampling is from the sample instead of from the popula- 
tion. For example, iAB is the probability that two gametes drawn at random with replacement 
from the sample are identical at both locus A and locus B .  We now derive expressions for these 
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sample identity coefficients in terms of the population coefficients. What is the probability that 
two gametes drawn with replacement from the sample are identical at  both loci? With probability 
I / n  the same gamete will be drawn from the sample twice, and with probability 1 - I / n  two 
distinct gametes in the sample will be drawn. This implies that 

(AB) $AB = 1/n + (1 - l /n ) '$AB.  

Similarly, with probability ( 1  - I / n ) ( l  - 2 / n )  three gametes drawn from the sample with replace- 
ment are all distinct gametes in the sample, and then the probability that the second is identical 
with the first at the locus A and the third is identical with the first at locus B is just r A B .  With 
probability ( l / n ) ( l  - l / n )  the second gamete drawn is just a resampling of the first gamete and 
the third gamete is a distinct gamete from the sample. If the gametes were drawn in this way, the 
probability of the second being identical with the first at  locus A is 1, and the probability of the 
third gamete being identical with the first at  the B locus is just $ B .  Considering the probability of 
the first and third sampled gametes being just resampling of the same gamete, the probability that 
second and third gametes are resamplings of the same gamete, and also the probability of the 
same gamete being sampled three times from the sample, we can write 

AAB is more complicated since it involves sampling four gametes from the sample, but the same 
reasoning leads to 

( n  - I)(n - 2)(n - 3 )  
n3  

2 (n  - I)(n - 2 )  
= AAB + n 3  [$A + 2 r A B ]  

By substituting into (AB), (A9) and (A10) the expressions for r A B  and AAB provided by 
STROBECK and MORGAN (1978) we obtain expressions for the expectations of the sample coeffi- 
cients, which can then be substituted into (A7) to obtain ,?(E2). 


