Skip to main content
. 2025 May 30;13:e74940. doi: 10.2196/74940

Table 3.

Models’ performance comparison of machine learning models based on routine vital signs monitoring without glucose.

Models Accuracy, median (IQR) Precision, median (IQR) Recall, median (IQR) F1-score, median (IQR) AUROCa, median (IQR)
SVMb 0.61 (0.59-0.64) 0.61 (0.59-0.63) 0.57 (0.55-0.6) 0.59 (0.57-0.61) 0.69 (0.67-0.71)
Random forest 0.66 (0.65-0.68) 0.65 (0.62-0.67) 0.68 (0.66-0.71) 0.66 (0.64-0.69) 0.73 (0.72-0.74)
ExtraTrees 0.67 (0.65-0.7) 0.65 (0.63-0.67) 0.66 (0.65-0.68) 0.66 (0.65-0.67) 0.74 (0.72-0.76)
XGBoostc 0.67 (0.66-0.69) 0.65 (0.63-0.67) 0.73 (0.71-0.74) 0.68 (0.66-0.7) 0.72 (0.7-0.73)
AdaBoost 0.67 (0.66-0.69) 0.67 (0.65-0.68) 0.66 (0.64-0.68) 0.66 (0.65-0.67) 0.75 (0.74-0.77)
Logistic 0.64 (0.63-0.65) 0.63 (0.62-0.64) 0.63 (0.61-0.64) 0.63 (0.62-0.63) 0.69 (0.67-0.7)

aAUROC: area under the receiver operating characteristic curve.

bSVM: support vector machine.

cXGBoost: Extreme Gradient Boosting.