Skip to main content
. 2025 May 25;6:157–163. doi: 10.1016/j.biotno.2025.05.001

Table 1.

Application of microbial electrosynthesis for bioproduction.

Microorganism EET Mode Key engineering strategy Substrate Product Key Findings Ref
Shewanella oneidensis DET Two-stage electro-fermentation; electro-regulated CRISPRi for pathway suppression Lactate Isobutanol Two-stage electro-fermentation process, using different voltages for growth and biosynthesis, enhanced isobutanol production. Directing reducing equivalents using NADH biosensor and suppressing byproduct pathways via CRISPRi led to an isobutanol titre of 1321.5 mg/L (94.9 % of theoretical yield). 28
Shewanella oneidensis DET Engineered glycerol utilization and (R)-acetoin biosynthesis pathway Glycerol (R)-Acetoin Expanded substrate range of S. oneidensis to glycerol. (R)-acetoin production reached 313.61 mg/L. 29
Escherichia coli DET Expressed heterologous S. oneidensis electron transfer proteins and biosynthesis pathways for isobutanol and 3-methylbutanol Glycerol Isobutanol, 3-methylbutanol Enhanced anoxic glycerol utilization. Total isobutanol and 3-methylbutanol production reached 232 mg/L, 25 % higher than using glucose 30
Escherichia coli IET (Neutral red- and 2-hydroxy-1,4-naphthoquinone mediated) Engineered glycerol reductive pathways to produce 1,3-propanediol (1,3-PDO) and 3-hydroxypropionic acid (3-HP) Glycerol 1,3-PDO, 3-HP Increased 1,3-PDO titre by 2.5-fold–15.5 mM with negative potential. Enable 3-HP production at 10.9 mM with positive potential. 33
Rhodopseudomonas palustris DET Engineered n-butanol biosynthesis pathway; deleted nitrogenases CO2 n-Butanol Produced 0.91 mg/L of n-butanol using CO2, electricity, and light. Demonstrated first solar panel-powered microbial electrosynthesis platform for n-butanol production. 39
Rhodopseudomonas palustris DET Overexpressed RuBisCO form I and II to increase CO2 fixation CO2 Polyhydroxyalkanoate Overexpression of RuBisCO increased polyhydroxyalkanoate production up to five-fold; engineered RuBisCO strains increased electron uptake under non-nitrogen-fixing conditions 40
Yarrowia lipolytica IET (Neutral red-mediated) Expressed AckA and Pta to increase acetyl-CoA; expressed pathway genes to produce fatty alcohols, lupeol and betulinic acid Acetate, glucose Fatty alcohols, lupeol, betulinic acid Enhanced NADPH regeneration by MES drove acetate utilization, resulting in 6.17-fold increase in fatty alcohol production; demonstrated first MES application in Y. lipolytica 32
Synechocystis sp. PCC 6803 DET Inactivated photosystem II; expressed heterologous ethylene-forming enzyme CO2, HCO3 Acetate, ethylene External electrons and light enabled CO2 fixation at 9.3 % energy conversion efficiency; achieved acetate and ethylene production from CO2. 25
Cupriavidus necator IET (H2-mediated) Expressed heterologous mevalonate pathway and α-humulene synthase H2, CO2 α-Humulene Produced 10.8 mg/L α-humulene by MES; first example of electroautotrophic terpene production from CO2 37
Cupriavidus necator IET (H2-mediated) Expressed lycopene pathway H2, CO2 Lycopene Produced 1.73 mg/L lycopene from CO2 from power plant exhaust gas 38
Cupriavidus necator DET and IET (flavin-mediated) Expressed heterologous S. oneidensis MtrCAB electron conduit proteins and Gloeobacter violaceus rhodopsin; overexpressed native carbonic anhydrase CO2 Biomass Created an artificial photoelectrochemical microbial system that directs CO2 into the central metabolism 41