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ABSTRACT 

The generalized nonepistatic selection regime encompasses combinations 
of multiplicative and neutral viability effects distributed across a set of loci. 
These subsume, in particular, mixtures of the classical modes of multiplicative 
and additive fitness evaluations for multilocus traits. Exact analytic conditions 
for existence and stability of a multilocus Hardy-Weinberg (H-W) poly- 
morphic equilibrium cmfiguration are ascertained. It is established that the 
central H-W polymorphism is stable only if the component loci are “over- 
dominant” and sufficient recombination is in force. The H-W central equilib- 
rium is never stable for  tight linkage whenever some multiplicative selection 
effects are contributed by at  least two of the loci involved. In the case of addi- 
tive selection expression and individual overdominant loci, the H-W polymor- 
phism is stable independently of the level of recombination. In the context 
of “natural” recombination schemes, “more recombination” enhances the 
stability 3f the H-W polymorphic equilibrium. 

basic problem of population genetics theory today pertains to multilocus A models; specifically, the extension of the analysis from two loci to n loci. 
The theory attempts to delineate the dynamic and equilibrium nature of gamete 
frequency realizations conforming with various classes of fitness regimes and 
recombination distributions. This paper is part of a series (see KARLIN 1977, 
1978; KARLIN and LIBERMAN 1979a,b), elaborating a quantitative theory of 
multigene interactions and means of measurement and interpretation of gene 
frequency associations. 

The studies of linkage and selection in multilocus systems centers on four main 
categories of models: ( 1 ) selection expression of “nonepistatic” effects across loci; 
(2) phenotype selection forms based on certain classes of phenotypic-genotypic 
associations; (3) genotype fitness evaluations invariant under natural group 
transformations; and (4) hybrid versions of the selection regimes of (1) to ( 3 ) .  

In order to assess the significance and consequences of epistasis, it is essential 
to delimit properly the range of nonepistasis and characterize the associated 
gamete frequency realizations. The essential features of a multilocus concept of 
nonepistasis are as follows: (a) each locus has an intrinsic fitness matrix of its 
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own, which specifies the fitness values of the marginal diplotypes; (b) each locus 
can express its intrinsic fitness values or be neutral; and (c) the fitness of a geno- 
type is obtained by adding or multiplying the marginal viabilities or neutral 
values associated with the constituent loci diplotypes. 

A relevant class of generalized nonepistatic fitness matrices occurs as a 
weighted combination of the classical nonepistatic regimes composed from multi- 
plicative, additive and neutral viability forms based on the same intrinsic loci 
fitness matrices. Another manifestation of "generalized nonepistasis" involves 
fitness contributions that accumu!ate additively with respect to a prescribed sub- 
set of loci and multiplicatively with respect to the complementary loci involved, 
while the two loci sets interact multiplicatively or additively. With these repre- 
sentations in mind, we proceed to describe, first in qualitative terms, and later 
a generalized construction of nonepistatic interaction. 

The generalized nonepistatic selection model has the following structure: con- 
sider all 2" possible partitions of the component n loci into two disjoint collections 
of loci I, and I,. With each such partition we associate a modified multiplicative 
nonepistatic fitness matrix determined such that at the loci in I, differential 
selection operates in accordance with the intrinsic fitness matrices of these loci, 
while the complementary loci, those of I,, act as neutral loci. Thus, corresponding 
to the partition Z,,Z,, a given genotype carries fitness values such that only the 
loci of I, exercise selection accruing as multiplicative factors conforming with the 
intrinsic fitness matrices of I,. The generalized nonepistatic model entails a fitness 
regime composed of a weighted sum of these (2") modified multiplicative forms. 

The existence of epistasis as against nonepistasis for our purposes will be under- 
stood to signify that fitness cannot be partitioned as appropriate mixtures of 
multiplicative and neutral selection effects accruing from the component loci 
in the sense described above. 

Orders of genic associations pertain to characterizations and classifications of 
gamete frequency configurations. A number of relevant indices have been 
worked on; e.g., BENNETT (1 954), FELDMAN, FRANKLIN and THOMSON ( 1974), 
HILL (1974,1976) and SLATKIN (1972). These measurements relate to statistical 
procedures for evaluating the significance of linkage disequilibrium and higher 
order associations attendant to observed gamete-frequency data. The defining 
feature of nonassociation affirms that all painvise and higher order linkage dis- 
equilibrium values are zero. In this vein, the notion of a Hardy-Weinberg (H-W) 
state is relevant. The Hardy-Weinberg property across loci signifies that a popu- 
lation gamete-frequency state has components determined as products of their 
respective gene frequencies. (Although the H-W attribute is classically under- 
stood as an intralocus property, the concept described above across loci is now 
commonly used.) Generally, a H-W multilocus polymorphism involves all geno- 
types occurring with moderate frequency and exhibiting random association of its 
constituent gene frequencies. For the two-locus, two-allele model the H-W prop- 
erty is synonomous with that of linkage equilibrium (D=O) . A H-W state in the 
multilocus context is characterized by the vanishing of a hierarchy of higher- 
order indices of associations. Measures of associations and concomitant indices are 
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used also to assess degrees and levels of symmetry, complementarity, and in 
establishing distance measurements to H-W representations. 

Our objective in this work is the elucidation of conditions for existence and 
stability of H-W equilibrium configurations in the context of the generalized 
nonepistatic selection models. A particular focus concerns the role of linkage and 
the quantification of the extent of recombination entailing a stable H-W poly- 
morphism. Apart from their innate interest these studies can help serve as a 
control for evaluating and interpreting gamete frequency outcomes relevant to 
classes of more complex epistatic multilocus selection models. A number of 
specific topics and problems dealt with in this work concern: (1) Ascertainment 
of the range of reconibination rates that guarantee the stability of a H-W poly- 
morphism for various levels and forms of nonepistasis. (2) Discussion of the 
problem: Does “more recombination” favor the attainment of a H-W stable 
polymorphism? (3) The relative roles of multiplicative and additive selection 
effects distributed over the loci bearing on the amount of recombination needed 
to maintain a stable H-W equilibrium. (4) The influence of position effects, that 
is, those combinations of loci acting neutrally as against the remaining loci 
possessing selection differentials. 

The analysis and pertinence of H-W equilibrium states for bisexual nonepi- 
static patterns is covered in KARLIN and LIBERMAN (1979a). The study of H-W 
configurations in the framework of a multideme population subject to local non- 
epistatic selection, coupled to migration flow, is dealt with in KARLIN and CAMP- 
BELL (1978). 

Results on the two-locus, two-allele multiplicative and additive models have 
been reported by a number of authors. In the additive case, KARLIN and FELDMAN 
(1970) have shown that there is a unique polymorphism of the H-W type- that is 
globally stable provided both loci are heterotic (heterozygote advantage at the 
separate loci) and non-zero recombination operates between the loci. The result 
was extended to the multiallele two-locus setup in KARLIN and LIBERMAN 
(1978a). For the multiplicative two-locus, two-allele model, MORAN (1968) 
proved that under free recombination, the presence of marginal heterosis guaran- 
tees global stability of the H-W polymorphism. BODMER and FELSENSTEIN (1967) 
ascertained the exact conditions for local stability of the H-W polymorphism for 
the two-locus multiplicative selection model. Roux (1974) considered other 
aspects of the multiplicative selection model employing a natural representation 
of the transformation equations of the process. An extensive review, plus further 
developments on the two-locus multiplicative-additive models inter alia, is covered 
in KARLIN (1975,1977). 

1. THE GENERAL MULTILOCUS, MULTIALLELE MODEL 

Consider in a large diploid monoecious population a trait determined at n loci 
with mk possible alleles AIk),A(,k), . . . ,A(k)  at locus k (k = 1,2, . . . ,n). In 
developing a framework that is tractable for delineating and interpreting recom- 
bination and selection effects, it i s  essential to operate with a natural coordinate 
system. We cannot just order all the gamete types 1,2, . . . ,R, Ii = m,mz . . . mn, 

ma’ 
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as is customary in the two-locus, two-allele model. Without recognizing the 
inherent intra- and interlocus symmetries in the n-locus context, the transfor- 
mation equations and their analyses become prohibitive. In the natural param- 
eterization, the analysis is substantially forthcoming and revealing. 

Let ir),iy) index the possible alleles at the kth locus. Associated gametes (haplo 
or chromosomal types) are described by the n-tuples. 

io (i t) , iy) ,  . . . ,;:I) and i, = (i(l),i(z) 1 1 7 - . . 7 z 1  ’Ob)). (1 1 
A typical genotype composed of the two gametes above is displayed in the form 

signifying that the allelic composition at locus k consists of alleles ikk’ and ir). 
We do not preclude that if) and i:k) refer-to the same alleles a t  locus k. 

The fitness value of the genotype (2) is denoted by 

The array (3), where io = (i(i) , . . . , i p ) )  and i, = (iy) , . . . , i‘,“)) cover all 

gamete combinations, generates the fitness matrix of order ( II m k )  X ( II mk). 

The reccmbination-segregation distribution depicts the frequency rates of the 
gamete output resulting from recombination and segregation. The outcome of 
meiosis involving the “male” gamete (i(i),i(i) , . . . , i(t)) and the “female” 
gamete ( i ( i ) , i ( t )  , . . . , i(;)) can be any of the 2” gametes (i(l),i(z’, , . . . , i(;)), 
where each E k  = 0 or 1, k = 1,2, . . . ,n. The recombination-segregation distribu- 
tion R prescribes probabilities to these 2” mutually exclusive events, and, thus it 
consists of the 2” nonnegative parameters { R ( E ) }  , where 

1% 11 

k=1 k=1 

5 €2 

R ( E )  = R ( E ~ ~ E Z ) .  :En), (4) 
stands for the probability of the recombination-segregation gamete product 
(ib11),i(2) , . : . , i (n) )  and E = (E+* , . . . , E ~ ) .  The representation (4) for the 
combined recombination-segregation distribution was formalized in this manner 
first by GEIRINGER (19M). As the two parental gametes contribute symmetri- 
cally to the gamete product and since the parameters { R ( E ) }  correspond to 
mutually exclusive recombination events, we have the two intrinsic relations 

Mostly, we refer to R = { R ( E ) }  simply as the recombination distribution. 

description of the gametes in terms of the 0 and 1 subscripts is natural. 

nation between the two loci, then 

E2 €S. 

R(E) = R ( l - - E ) ,  z R ( E )  E = 1 (Here 1 = (1,l , . . . , 1 ) ) .  ( 5 )  

In order to operate the multilocus diploid recombination mechanism, the 

The two-locus case: I n  the case of two loci, if r is the probability of recombi- 

( 6 )  
1 -r r 

R(0,O) = R ( 1 , 1 )  =- , R(0, I )  =R(1,0) =- e 2 
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The three-locus case: The recombination distribution is determined by three 
parameters r,s and t defined by 

1 -r-s-t S 

2 2 
r t 

2 2 

, R(0,0,1) = R(l,l,O) == - 
(7) 

R(0,0,0) = R(l , l , l )  = 

R(0,1,0) =R(1,0,1) =- . R(O,l,l) = R(1,0,0) =- , 

A different parameterization of the recombination scheme is more traditionally 
used with rl as the recombination rate between loci 1 and 2, rz as that between 
loci 2 and 3, and r3 as that between loci 1 and 3. The parameters in the two nota- 
tions are connected by the relations rl = r+t, rz = s+t, r3 = r f s .  

The case of no interference is characterized by the equation t = (r+t)  ( ~ + t )  
or equivalently by the relation r3 = rI (1 -r2) + r2 (1 -rl) = rl + r, - 2r1rz. The 
situation where recombination between two adjacent positions precludes recom- 
bination in the next segment (the complete interference model) corresponds to 
the stipulation t = 0. 

We single out next, in the context of the general n-locus model, a number of 
relevant recombination distributions. Absolute linkage (no recombination) R(O) 
is defined by 

1 
2 R ( 0 )  =R(1) =-, R ( E )  = O  for E # O  OF 1 

where 0 = (O,O, . . . ,O) and 1 = (l,l, . . . ,1) reflect no effective exchange of 
genetic material. 

Free recombinatioa, R ( f ) :  Here, in the case o'f n segregating loci, 

(9) 
1 
2" 

R(E) = - independent of E .  

Where the individual loci are all located on different chromosomes, then (9) 
assuredly applies. 

Recombination arrays reflecting specific physical characteristics of loci: Sup- 
pose the loci are endowed with a physical arrangement along a single chromo- 
some. We can consider independent probabilities of breaks between successive 
positions (the no interference postulate). Let r+ be the probability of a break 
between loci i and i 4- 1. Then, 

It is possible to generate a hierarchy olf recombination-segregation distributions 
that take account of the physical ordering in the loci using concepts of renewal 
and counter processes, e.g., see OWEN (1950), BAILEY (1961) and KARLIN and 
LIBERMAN (1978b). 

The gamete frequency transformation equations: Let x(io) = x ( i r )  , . . . , i?))  
denote the frequency of the general gamete type io = ( i ( i )  , . . . , i ( t ) )  in the 
population of the current generation. Under random mating, subject to the 
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effects of viability selection, the relative proportion of the genotype (2) among 

mature individuals is w (5) z (io) z (i,) . The segregation process joined with the 
recombination contingencies leads to the frequency of the gamete type Y( io) = 
z'(ir) , . . . , ip)) in the next generation computed by the formula 

'1 

(the sum extends over all possible R = mlmz . . . m, gamete types i, = (iy), 
i?) , . . . , ;I")).) where w(x) is the mean fitness function for the population 
state x, namely 

w(x> =. 7 w(F)x(io)z(il) . 

i 

10711 11 

It may be helpful to illustrate the procedure underlying formula (10) and the 
formula itself €or the two-locus, two-allele case with alleles A,a at the first locus 
and B,b at the second. Let io = (iy),iA2)) refer to the gamete ab. There are four 
classes of genotypes that can produce by recombination-segregation the gamete 
ab. They are listed next with their corresponding frequencies. 

Frequency of ab: R(O70) R(071) R(1,O) R(1,1) 

where (il(l),il@)) runs over the four possible gametes AB, Ab, aB, ab. Accwd- 
ingly, the resulting frequency of the ab gamete x'(a,b) in the next generation is 

which is exactly (1 0). 

2. THE GENERALIZED NONEPISTATIC MULTILOCUS SELECTION MODEL 

The generalized nonepistatic selection construction encompasses combinations 
of multiplicative and neutral viability effects across loci. I t  is instructive and of 
independent interest to set forth first the two-locus, two-allele case. Let the 
intrinsic fitness values for the indicated genotypes at the first locus be 
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and at the second locus 
BB: ~ ( 2 )  11 . Bb: ~ ( 2 )  12 = ~ ( 2 )  21 bb: w(ii (1 Ib) 

In the present cbntext, there are four basic selection forms that may be joined in 
ccnstructing the generalized nonepistatic selection regime. Two of them, W (1,O) 
and W(O,l), are fitness prescriptions carrying selection effects expressed only 
at the first and second loci, respectively, following the two marginal fitness 
matrices. The third basic regime, W (1,l) manifests independent multiplicative 
effects coupling the loci; i.e., the fitness of a genotype is the product of the mar- 
ginal fitnesses conferred by each locus. The fourth iorm, W(O,O), entails no 
selection differentids among genotypes, i.e., total neutrality. It is useful for regu- 
lating the selection intensities of the other terms. 

It is convenient to display these four basic nonepistatic regimes, conforming to 
the gamete arrangement AB, Ab, aB, ab, associated yi th  the marginal fitness 
parameters of ( 1 1 a, 1 Ib) . 

Thus, the fitness of the genotype (AB/Ab) coryesponding to W(1,O) has value 
wi;) reflecting selection acting only at the first locus. Similarly, the fitness'value 
of (AB/Ab) corresponding to W(0,l) is w(,21 and that of (AB/Ab) associated 
with W (  1,l) is w ~ ~ w ~ ~ ) .  Finally, the fitness ascribed to (AB/Ab) (in fact to. 
any genotype) by W(O,O),is 1. 

In the two#-locus context the generalized nonepistatic selection structure 
founded on the intrinsic fitness parameters ob (1 la, 1 Ib) consists of the combined 
fitness expression 

that is, a weighted sum of the four basic fitness matrices. Note that r for the 
determination p=y=S=O, ICY = 1 reduces to the classical two-locus, two-allele 
multiplicative nonepistatic regime, while the specialization P=y=l, a=6=0 leads 
to the classical additive nonepistatic regime. 

It is illuminating and helpful to pass next to three loci to help convey the scope 
and nature of the generalized nonepistatic selection mode. Let the marginal fitness 
matrix for the kth locus, k = 1,2,3, be W k  = ~ / w , ( ~ ~ ) ~ / ~ ; - ~  specifying the fitnesses 

, -  
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associated with the diplotypes (A:)  A Y ) ) .  These matrices combine in eight ways 
(2" for n loci) to generate the basic selection regimes underlying generalized 
nonepistatic selection structures. We highlight these matrices in tabular form 
indicating the fitness associated with the genotype (A(~)A(~)A( ,3) ) / (A"A"'A'3 , )  m g  

U 

Matrix Entry Description 

Independent multiplicative factors 
from all three loci 
Loci 1 and 2 interact multiplicatively, 
while locus 3 manifests neutrality 
Loci 1 and 3 interact multiplicatively, 
while locus 2 manifests neutrality 
Loci 2 and 3 interact multiplicatively, 
while locus 1 manifests neutrality 
Selection only acting at locus 1 
Selection only acting at locus 2 
Selection only acting at locus 3 
Neutral 

With this notation generalized nonepistasis induces a fitness matrix of the form 

(14) 
r = cll lW(l, l , l)  + ~ ~ ~ ~ W ( 1 , 1 , 0 )  + ciniW(I,O,l) + collW(O,l,l) 

+ ciooW(1.0,O) + coioW(O,I,O) + CnoiW(O,O,l)  + coooW(O,O,O) . 
As with two loci, the standard multiplicative nonepistatic form ensues from 

the choice clll = 1 with all other c's equal to zero. Additive nonepistasis results 
from the specification cloo = col,, = cool = 1, and all other c's zero. Other interest- 
ing specializations of ( 14) reflect a mixed additive-multiplicative interaction 
among the loci. For example, the choice cllo = cool = 1 (with the remaining c's 
equal to zero) entails multiplicative nonepistasis between the first two loci, but 
additive nonepistasis between the gene complex consisting of the first two loci 
and the third locus. 

We now pass to the formulation of the n-locus generalized nonepistatic selec- 
tion regime. For pure multiplicative nonepistatic selection we have the familiar 
construction: 

where W k  = IIwE.)~~?~,  
replaces product by sum, so that 

is the intrinsic fitness matrix associated with locus k. 
For pure additive nonepistatic selection, the evaluation on the right side of (15) 

L J Z 1  
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We need the mathematical concept of Kronecker products of matrices and 
vectors. Let A be an m x n matrix and B an I X k matrix. We denote by A 0 B the 
Kronecker product of A and B namely, the partitioned matrix 

A Q B =  

A Kronecker product of vectors z 0 y is calculated as the Kronecker product of 
the (single) row matrices regarding the vectors z and y as matrices. 

Employing the construction of Kronecker products of matrices, we can write 
the multiplicative fitness matrix (15) in the Kronecker product form 

M = W,O W 2 0 . .  . W ,  (17) 

In  the additive case, we denote by E k ,  k = 1,2, . . . ,n, the mk x mk matrix 
whose elements are all unity. In  this notation. we may identify the summand 
w!:)~,,,,,,, with the n-locus fitness matrix s k = E l @ E z @ .  . . @  Wk-,@ wk@Ek+l  

0 . . . 0 E,. Therefore, we can represent (1 6) as the special sum of Kronecker 
products 

n 

k=1 
s=  z S k  (18) 

When selection is globally neutral. then the fitness matrix is simply 

E = E, 0 E,  0.. , @  E,  (19) 

A generalized nonepistatic selection model extending (13) and (14) has the 
following construction. There is defined for each locus an intrinsic fitness matrix 
W h  of order mh x mk for locus k, admitting mh possible alleles. Let E k  as before 
be the fitness matrix of size mk x mk composed of all unit elements. A general- 
ized notion of nonepistasis of an n-locus trait with associated fitness matrix r of 

order R x R (R'= 
n 

k=1 
mk) has the form 

r = z c ( 7 )  (W1hl) 0 W2W 0 . . . 0 W,'Tn') (20) 
7 

where the sum is extended over all n-tuples 7 = ( ~ ~ , r ] , ,  . . . ,v,), 7 k  = 0 or 1, sub- 
ject to the special convention 

Wk") = W k ,  W k ' O )  = Ek (21 1 
Accordingly, for each 7, the matrix W ( 7 )  = W1'm) 0 W z ( d  0 . . . 0 Wn(Tn) 

describes an ordinary multiplicative nonepistatic fitness matrix with marginal 
selection forces operating at those component loci where r]k = 1 while no selection 
differentials are contributed from the other loci. The collection of fitness matrices, 
{ W (7)  }, combined as in (20) induce a generalized nonepistatic regime based 
on the intrinsic fitness matrices { Wk}ln. The coefficients c (7)  contrast specific 
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combinations of nonepistatic selection differentials and neutral effects distributed 
among groupings of loci. We will write (21) more compactly as (cf., (13),  (14) ) 

= 2 4 7 )  W ( ? )  * (22) 

Where c(1) =c(1,1,. . . ,1) = 1 and all other ~ ( 7 ) ' s  equal zero, we have the 
pure multiplicative nonepistatic selection mode W of ( 1 7 ) .  If c(l,O, . . . ,0) = 
c(O,l,. . . ,0) =. . . =c(O,. . . , O , l )  = 1 andallotherc(~)'sequalzerothen (22) 
represents additive nonepistatic selection S, whereas if c(O,O, . . . ,0) = 1 and all 
other c(r])'s are zero we get neutral selection E .  We obtain the mixture 

11 

F == aM 4- PS +YE 

of these three selection patterns by prescribing 

~ ( 1 )  =~m,c(l,O ,..., 0 )  = ~ ( 0 , 1 ,  ..., 0 )  =. . . = c ( O  ,..., 0, l )  = ~ , c ( O )  = y .  

and the remaining c(r]) = 0. 
The gamete frequency transformation equations with generalized nonepistatic 

selection: In the important case where the underlying fitness matrix has the 
multiplicative strccture (17),  (10) can be succinctly expressed in terms of 
Kronecker and Schur products. 

Schur product: Let x = (zl, . . . ,xm) and y = (y l ,  . . . ,ym) be two vectors. The 
Schur product of x and y denoted x 0 y is the vector 

(23) 

x O y = (51y1,22y2, - * * , ~ m Y m >  * 

Let x designate the population state (gamete frequency array) in the current 
generation and x', the population state of the next generation. 

With multiplicative nonepistatic selection and intrinsic fitness matrices 
W,,W,, . . . ,W,, the transformation of gamete frequencies (10) expressed in 
vector form becomes 

w(x)x '=XR(E)  (W'I 0 W % @ .  . . 0 W ' ~ ) X O  (W1-%O W1-'z0.. . 0 W1-'n)x 
n 

(24.1 

where w ( x )  is the mean fitness at the population state x. The exponents Ek and 
l - ~ k  indicate powers such that W k o  = Zk (the identity matrix of order m k )  and 
W k l  = W k .  

It is helpful to exhibit the form of (%) in the case of two and three loci. For 
the two-locus multiplicative model, (24) reads as 

w(x)x '= ( l - - I ) (Z0Z)xo  ( W 1 O W Z ) x + r ( W 1 ~ z ) x o  (ZOW2)X.  

For the three-locus multiplicative model with recombination parameters r,s,t as 
defined in (7) ,  (24) becomes 

w (x)x' = ( 1  -r-s-t) ( Z  0 z 0 Z)x 0 ( w, 0 w2 0 W , ) x  

+ S ( W 1 0  W 2 0 Z ) x o  ( Z @ Z 0 W 3 ) x  
+ t ( W 1 0 Z @ W , ) x o  (zow,oz)x . 
+ r (W,  0 Z 0 Z)x o ( Z  0 W ,  0 W , ) x  
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We underscore that the recombination frequencies r,s,t enter into the transfor- 
mation equations symmetrically. This would not be the case if the traditional 
crossover parameters r1,r2, and r3 were used (see after equation 7 ) .  

As the fitness matrix for the extended nonepistatic model (20) is a sum of 
multiplicative fitness regimes, the attendant transformation equations of gamete 
frequencies are derived by applying the formula (24) to each of the terms in 
(20) * 

3. EXISTENCE AND STABILITY O F  HARDY-WEINBERG POLYMORPHIC EQUILIBRIUM 

An important ingredient of the generalized nonepistatic selection model con- 
cerns the existence of a “central” Hardy-Weinberg equilibrium frequency state. 

Formally, a vector x of mk = R coordinates is said to be of the H-W type if x 
admits the Kronecker product representation 

n 

Tcrl 

X =  XI 0 XZ 0.. e 0  xn 

where xk is a vector of size m k .  The representation (25) entails that the com- 
ponents of x are determined by multiplicative contributions from the components 
of xl,xa, . . . ,xn. That is, the gamete frequencies (the components of x) result as 
the products of their respective gene frequencies (the components of the xk’s) . 
It is helpful to discuss some examples. 

In the model of two loci with two alleles at each locus (alleles A,a at locus 1 
and alleles B,b at locus 2), then x = (&,&,,&,&) is H-W if and only if the disequi- 
librium expression D(x) = &[4 - &&3 vanishes (i.e., x is in linkage equilibrium). 
This fact is manifest on the basis of the familiar representation 

(25) 

t1 = freq(AB) = PAPB + DAB, t2 = freq(Ab) = PAPB - DAB 

(3 = freq(aB) PapB - DAB, t+ = freq(ab) = PaPb + D A B  , 
where pa = t1 + & is the marginal frequency of A for the population state 
x,pB = -t &, etc., and D (x) =DAB (x) = &[4 - &f3 is the linkage disequilibrium 
function. The marginal frequency vectors x1 and xz corresponding to the two1 loci 
in explicit components are x1 = (pA,pa) and xz = (PB,pb). A compact writing of 
(26) as sums of Kronecker products gives 

(26) 

x = x1 0 x2 + D(x)e 0 e (27) 

where e = (1,-I) ,  which shows that x projects in the direction of e 0 e an 
amount of D (x) to achieve the Kronecker product vector composed from its com- 
ponent gene frequency vectors. 

Consider next the case of three loci with two alleles at each locus, say {A,a},  
{B,b}, and {C,c} at the respective loci. Let pa, p a ,  pB . . . , denote the marginal 
frequencies of the alleles A,a,B, . . . , respectively. We focus on the frequency 
state x = (&,t2, . . . ,b), where t1 = frequency of the gamete type (ABC), t2 = 
freq(ABc), etc. It is coavenient to operate with the random variables X,Y,Z 
defined for each gamete type, such that X = l(0) if allele A (a) occurs at locus 
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1 ; Y 1 or 0; 2 = 1 or 0 according as B or b and C or c occurs a t  loci 2 and 3, 
respectively. We recall the following functionals and measures of association 
(apparently introduced originally by BENNETT 1954) ; 

E (X) = expectation of X = frequency of A = p A ,  
E ( Y )  and E (2) are defined similarly; 

painvise linkage disequilibrium values (or second order associations) 

DAB= E[X-E(X)][Y-E(Y)] = E ( X Y )  - E(X)E(Y) = freq(AB)-p,p,,, 

third order association, 
DABC = E [  ( X - E ( X )  ) (Y-E ( Y )  ) ( Z - E ( Z )  ) 1 

DBc and Dnc defined analogously; ( 2 8 )  

= freq(ABC) - p a  freq(BC) - p B  freq(AC) - p c  freq(AB) i 3 pAp.pc. 

x = x 1 0 x 2 0 x s  + D B c ( x )  ( x , O e O e )  + D,lc(x) ( e O x , O e )  + Dnrl(x) ( e O e O x ? )  + Dnnc(x) ( e O e O e )  
(30 )  

where e stands for the canonical vector e = (1,-1) as in (27 ) .  
I t  is easy to infer on the basis of (30) that x reduces to x = x1 0 xn 0 x3, that 

is the gamete frequencies occur as products of their gene frequencies if and only if 

Dnc(x) = DZtc(x) = D A B ( X )  DABC(X)  = 0 . (31) 

When multiple (more than two) alleles are present, the messures akin to (28) 
are determined by distinguishing an allele a t  each locus and lumping the remain- 
ing alleles, reducing the system to two alleles per locus. In this way, correspond- 
ing to each gamete, an  array of second, third, etc., association indices are com- 
puted. With these concepts established, we secure the €act that a vector of the 
Kronecker product form (25) manifests zero associations of all orders. Con- 
versely, a complete set of zero assxiation values for x characterize vectors repre- 
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sented as Kronecker products composed from the component gene frequency 
vectors. 

The important Result I below applies to the generalized nonepistatic fitness 
regimes (22). The precise quantitative conditions ensuring stability of the H-W 
polymorphic equilibrium are delineated in Result I11 subsequently. 

ResuZt I: If each marginal fitness matrix Wk admits an equilibrium, xk then 
the Kronecker product vector 

A 

(32) 
A A A  

x = x 1 O x 2 O  . . .  O X n  
constitutes an equilibrium of the extended nonepistatic fitness regime (22), 
independent of the weights {c(  7) }, persisting for any recombination distribution. 
The equilibrium mean fitness is given by 

.G = c (7) .G (7) where .G (7) = .Gl?i.GZ~~ . . . fin?* . 
n 

It  is revealing to present in qualitative terms (cf., 36, below) the stability con- 
ditions for  the central H-W equilibrium in the cases of the pure multiplicative 
and pure additive selection fonns. The facts on this matter are juxtaposed and 
highlighted as the content of Result 11. 

Result ZZ: For multiplicative nonepistasis, the H-W vector (32) can be stable 
only under the condition that “heterosis” (“overdominance”) prevails at each 
component locus (i.e., each Xk is stable for the one-locus fitness matrix, wk) , and 
provided the recombination frequencies are large enough (e.g., free recombi- 
nation is more than enough) ; whereas in the additive nonepistatic case, heterosis 
at each separate locus already assures that the H-W polymorphism is stable, 
probably globally stable, for any degree of non-zero recombination. 

I n  the general model (22), where the fitness values are not purely additive 
over loci, stability for the H-W equilibrium still requires enough positive recom- 
bination frequency among the loci, but at a reduced rate compared to the pure 
multiplicative model. Our experience, based on numerical computations, per- 
taining to Result 11, indicates that generally moderate recombination suffices to 
insure a stable H-W polymorphism for multiplicative fitnesses. 

Exact conditions for stability of the H-W polymorphism: Suppose k k  is a 
polymorphic equilibrium with respect to locus k associated with the marginal 
fitness matrix Wk. Let wk(z) denote the mean fitness of the frequency state z 
with respect to the fitness matrix Wk. The standard one-locus theory (e.g., 
KINGMAN 1961), tells us that fLk is stable if and only if the eigenvalues { X k , i } m h  

of the matrix Wk defined in (34) below satisfy 
%=l 

1 =&,I > 0 > &,z . . . > hk,mk . (33) 

The matrix is constructed as the matrix Wk multiplied on the left by the 
diagonal matrix having the components of the vector &/w, (4,) on the diagonal, 
or in symbols 



790 S. KARLIN AND U. LIBERMAN 

Because the factors Eh. occur intrinsically in (20) - (21), we also need to work 
with the malrix - A 

E k = ~ k o E % .  ( 3 5 )  

(This is Ek multiplied on the left by the diagonal matrix with the components 
of 4% on the diagonal.) The eigenvalues of E,, designated by { p k , i } 2 1 7  assume 
two values 1,  pk,i = 0, i = 2,3, . . . ,mk. We are now prepared to exhibit 
the exact stability conditions. 

Result ZZZ: “lie H-W polymorphism x = x1 0 xz 0 . . . xn is locally stable for  
the generalized nonepistatic selection regime (22) provided the quantities 

for all possible specifications of i,,i,, . . . ,in precluding il=iz= . . . =in = 1, are 
less than one in magnitude. The rate of approach to the “central” H-W equi- 
librium is the largest magnitude of the quantities (36). (The strength of 
stability can be defined as 1 - rate of approach). 

These criteria impose ( fi mk) - 1 =R-1 requirements that often can be 
reduced by assuming additional structure on the model, usually of the nature 
of further relations satisfied by the coefficients (~(7) } defining the selection 
regime. It is illuminating to elaborate a number of important cases of Result 111. 
I n  the sequel, unless stated otherwise, we assume the hypothesis of Result I and 
that each individual locus is overdominant (see Result 11). 

1.  Two-locus stability of a H-W polymorphic equilibrium: In  this case the 
generalized nonepistatic fitness matrix has the f o r m  

c(1,l)  W ,  0 W z  + c(l,O)W1 0 E, + c(O,l)El 0 W ,  4- c(O,O)E, 0 E, . (37 )  
The conditions of (36) are of two types. The first merely affirms the stability 
requirements for the marginal equilibrium vectors, k, and &, equivalent to the 
relations (33)  for the eigenvalues {Al,i}lm~ and {~2, i} l%, that is, loci 1 and 2 are 
individually “o~erdominant’~. For typographical convenience we abbreviate the 
notation to 

k=1 

Xl,i  = ai, i=l,2, . . . ,ml and = b?, j=1,2, . . . ,m, 

The further requirements embedded in (36) involve the recombination rate r 
between the two loci. This second set of conditions can be condensed to the single 
inequality 

r > ro = max R,j , where R i j =  

2<i<m, 
2<j<m2 

(38)  
c (1 ,I) G1Ozaibj 

c( 1,l)  O,O, ( l--ai) ( l-bj)  +c ( 1 , O )  $l ( l-ai) +c (0 , l )  Gz ( 1  - - b j )  +c(o,O) 

where Cl = w,(>,) and Dz = wn(k2) calculate the marginal mean fitnesses at  
equilibrium. 



NONEPISTATIC SELECTION REGIMES I 791 

Inspection of (38) reveals that if c(  1,l) > 0, then some positive recombination 
is indispensable for stability of the H-W polymorphic equilibrium. In the pure 
multiplicative selection model, viz, 

Notice that with two loci, il' c(1,l) = 0, such that the generalized nonepistatic 
selection regime is lacking a pure multiplicative contribution, then ro = 0, and 
any degree of positive recombination entails stability of the H-W polymorphic 
equilibrium, provided the two loci are heterotic. We add the note that if c (  1,l)  z 
0, the selection mode is not the additive case unless c(1,O) = c(0,l). 

ai 1 
1 1-ai 2 
4 

Since -1 < a, < 0, i = 2, . . . ,n (see 33), it follows that - < - On this basis 
we deduce that r,  < - for all circumstances of two-locus generalized nonepistatic 
selection provided only that c(7) 2 0 for all 7. In particular, the central H-W 
equilibrium is stable in the presence of free recombination, even for r > - (and 
in most practical cases for r > 0.1). 

FELSENSTEIN (1974) studied a two-locus fitness model with viability regime 

1 

4 

subject to 0 < s,t,u,u,k < 1. If we prescribe the marginal fitness matrices 

then the fitness matrix associated with (40) can be represented as 

which is of the structure (22). 

provided the recombination frequency r satisfies 
In  this special case the two-locus H-W polymorphism is locally stable by (38) , 

2. Pure multiplicative nonepistasis: In (22) we set c(1) '= 1, c ( q )  = 0 for all 
7 f 1,  so that the conditions of (36) reduce to: 

the polymorphisni & = & 0 & 0 . . . 0 &, is locally stable provided the in- 
equalities 
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prevail for all choices of { & i } ; ~ ~ ,  k =  1,2, . . . ,n omitting the specification 

The finding (43) for pure multiplicative nonepistasis was first uncovered by 
Roux (1974). 

3. Mixed nonepistasis selection effects: Based on case ( 1  ) , one might have the 
impression that the stability of H-W polymorphic equilibrium needs some recom- 
bination only when the fitness matrix involves a pure multiplicative term. T o  
illustrate that this is wrong, we discuss the case of three loci, with two alleles per 
locus, where the fitness matrix is given by 

W 1 O E 2 O E , + E , O W , O W , .  (44)  

{A1,1>A2,17 . . * ,bL,l}. 

This fitness matrix represents a generalized nonepistatic selection mode where 
the fitness contributions are conferred additively with respect to the first locus 
and the other two loci, while the fitnesses due to the second and third loci are 
multiplicative. This selection mode does not involve any straight multiplicative 
term. But applying the stability conditions (36) we find that the H-W poly- 
morphism is stable when the three loci are heterotic and the recombination 
parameters r.s,t (of (7) ) satisfy 

0 < r ,< 1/2, a* < s+t < 1/2 , (45 1 
where CL* is a calculable positive number determined by the actual fitness values 
at the three loci. 

4. THE I N F L U E N C E  O F  “MORE RECOMBINATION” O N  T H E  STABILITY O F  A 

HARDY-WEINBERG POLYMORPHISM 

For a system of two loci there are two natural bounds for the range of the 
recombination rate, r. On the one extreme there occurs the phenomenon of abso- 
lute linkage (no recombination) , corresponding to r = 0. The traditional upper 
bound refers to free recombination, r = 1/2. Although mechanisms for recombi- 
nation rates exceeding 1/2 are conceivable in the context of some degree of chro- 
matid interference, one usually takes the “natural” recombination range to be the 
interval 0 < r < 1/2. 

The theoretical analysis of two-locus selection balance often compels the 
intrinsic restriction r < 1/2. For example, the special position of free recombi- 
nation relates to the scope of stability for a H-W equilibrium in the presence of a 
general viability scheme. Let x* = ( f ~ , f ~ , [ ~ , t ~ )  be an equilibrium for a general 
two-locus, two-allele viability regime. Suppose that D(x*) = f : [ z  - f-yt; = 0 
and x* is stable for some recombination ( r  = ro ) .  Then it is established (KARLIN 
1979) that x* persists as a stable equilibrium for r through the ranger,, < r < 1/2. 
On the other hand, although x* exists as an equilibrium for  all 0 < r < 1, this 
equilibrium state need not be stable when r somewhat exceeds 1/2. 
The ordering of more or less recombination in the case of two loci is unambiguous 
since a single real recombination parameter is involved. For three or more loci, 
the recombination process is characterized by a vector of rates ( 3  for  three loci, 
7 for four loci, etc.). Because of this multivariate setting, two recombination 
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frequency distributions R = { R (  E )  } and R’ = {R’( E )  } are not always com- 
parable. However, any partial ordering relation among natural recombination 
distributions certainly compels the view that absolute linkage R(O) [see (8)] is 
a minimal recombination distribution, whereas free recombination R(f)  [see 
(9) ] should correspond to a “maximal” natural recombination distribution. A 
possible characterization of what is “more recombination” in a multilocus frame- 
work can be based on the following idea. Suppose that n loci are ordered, and let 
A, fo r  i = 1,2, . . , ,n-1 denote the chromosome segment connecting loci i and 
i+l. With respect to each subcollection of such segments, we ascertain the proba- 
bility of an odd number of crossover events. These quantities are called “general- 
ized recombination values” evaluated for  every union of genomic segments 
connecting the various loci. For a single segment, A,, the generalized recombi- 
nation value coincides with the actual recombination rate between loci i and i t l .  
These generalized recombination values are estimable just as ordinary recombi- 
nation rates (actually, independent of the order of the loci involved). 

In terms of this array of generalized recombination values, the notions of 
“natural recombination” and “more recombination” can be coherently defined. 
Accordingly, relative to the n loci genome region we say that: ( 1 )  the recombi- 
nation distribution R induces a “natural recombination” scheme if all the associ- 
ated “generalized recombination values” are confined to the range [0,1/2] and 
(2) under the meaningful constraint that the recombination distributions R and 
R’ are both natural, we say that R involves “more recombination” than R’, pro- 
vided all the generalized recombination values associated with R exceed, respec- 
tively, those associated with R’. 

With respect to these concepts, the recombination distribution referring to 
absolute linkage and free recombination are both natural, and they serve as 
“minimal” and “maximal” natural recombination distributions, such that other 
natural recombination distributions are constrained between them. To introduce 
these notions formally we define the multilocus linkage values associated with a 
recombination distribution, R. 

Definition I :  Let R = { R ( E )  } be an n locus recombination distribution and 
let 6 =  (SI,&, . . . ,S,) be such that S , = O  or 6, = 1 for i=1,2,. . . ,n and 

1s 

16 I = ,zi 6% is even. The linkage value p (6;  R) associated with 8 is defined as 
n 

p ( 6 ;  R) = Z R ( E )  (- 
E 

where the sum extends over all E = (e1+,  . . . , E * ) ,  and each ~i is independently 
0 or 1. (The linkage value concept was first introduced by SCHNELL (1961) for 
purposes of computing identity-by-descent measures of various regular inbreed- 
ing systems in the multilocus framework.) 

Definition 2: ( 1 )  The recombination distribution R is natural if the associated 
linkage values p (  8; R )  are nonnegative for all 8. (2) If R and R’ are two natural 
recombination distributions, we say that R involves more recombination than 
R’ if 

(47) p(6;R) < p(8;R’) forall 8. 
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With two loci, a check of (46) shows that a recombination scheme is natural 
if 0 < r < 1/2. In view of (46), the comparison (47) reduces to r > r‘. For the 
case of absolute linkage R(O), the linkage values are all identically 1, while for 
the case of free recombination, all the linkage values vanish except for the S = 0 
component. 

With Definition 2 at hand the following result emerges: 
Result ZV: Under a generalized nonepistatic selection regime with “natural” 

recombination, if the H-W polymorphism is stable for some recombination 
level, then it is stable if “more” recombination is in force. 

In  the two-locus case, the foregoing result simply states that if the recombi- 
nation rate ranges from 0 to 1/2, then the stability conditions on I* are of the 
form r > io, where r, is explicitly ascertained (in terms of the nonepistatic fitness 
coefficients [cf., (38) 1. For any noninterference recombination structure with 
natural (between 0 and 1/2) painvise recombination rates, stability of the H-W 
polymorphism is maintained only if the pairwise recombination rates are suffi- 
ciently large. 

5. FURTHER DISCUSSION A N D  GRAPHICAL ANALYSIS OF SOME EXAMPLES 

We attempt herewith to pinpoint the consequences of different forms of non- 
epistasis with respect to the “critical” levels of recombination needed in estab- 
lishing a stable central H-W polymorphism. In  order to discern these effects as 
separated from the influences attributable to variant marginal selection param- 
eters, we assume that the marginal fitness matrices across loci are the same. 
Furthermore, in the comparisons we can assume without loss of generality that 
each locus carries two alleles such that the marginal heterozygote fitness value 
is 1. 

The two-locus case: Let ro be the minimum level of recombination essential 
for stability of the H-W polymorphism, when selection forces are straight multi- 
plicative. Then, the critical recombination frequencies corresponding to the 
extended nonepistatic selection regime 

c(l , l)W1 0 W z  + c(l,O)Wl 0 E, + c(O,l)E, 0 W ,  + c(O,O)E1 0 E, is 

L l , l )  + C ( 1 , O )  + C(0,l) + c(0,O) ) *  
namely, the part of ro determined by the proportion of pure multiplicative via- 
bility effects relative to the conglomerate nonepistatic selection regime. Accord- 
ingly, with the superposition of increased multiplicative selection expression 
relative to additive selection expression, the opportunities for  observing a stable 
H-W polymorphic equilibrium are diminished. 

r+s (see Section 1 ) be the 
pairwise recombination rates between loci 1 and 2 ,2  and 3, and 1 and 3, respec- 
tively. Let r, denote, as above, the critical extent of painvise loci recombination 
rates necessary for establishing the H-W polymorphism stable under pure multi- 
plicative selection (ro coincides for the three pairs of loci as the marginal fitness 

The three-locus case: Let r1 = r+t, r2 = s+t, r3 
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matrices coincide). Thus, for extended nonepistatic selection regimes of the form 
[Cf . ,  (14)l 
C (  1,1 ,I) Wi O Wz O W3 C (  I,I,O) W1 O W ,  O E3 +. . .+ C ( O , O , O ) E i  O E,  O E3 , 

the stability of the H-W polymorphism requires overdominance at each locus 
and pairwise recombination rates large enough to the extent olf 

~ ~ ~ , ~ , O ~ + W ~ , ~ , ~ ~  
rl > r,, a 

[c(1,~,0)+c(1,0,0) +c(O,l,O) +c(0,0,0) l + ~ ~ c ~ ~ , ~ , ~ ~  +c(1,0,1) +~(o , l , l )+c(~ ,o , l ) l  

C(O,l,l) + W l , l , l )  r2 > T o .  ________- 
[c  (O,I,l) +C(O,l  ,O) +c(O,O,l) +C(O,O,O) 1 + a c ( l , l , l )  +c( 1AO) +c(l,O,l) +c(1,0,0)1 

(49) ~ ~ ~ , ~ , ~ ~ + ~ ~ ~ ~ , ~ , l ~  
[c (1,OJ 1 +c(1,0,0) +c(O,O,l) +C(O,O,O) 1 +G[c(l,l,l) +c( 1,W) +c(O,l,I) +c (O,I,O)l 

We propose to provide a comparison along the lines of the two-locus case. In this 
vein, we compare the stability conditions (49) for the three classes of selection 
forms 

- Pure multiplicative selection c (  l,l,l) = 1 and other c’s zero. 
-c(l,l,O) =c(O,1,1) =c(1,0,1) = 1 and all other c’s zero. 

CIl1 -Pure additive selection c(l,O,O) = c(O,l,O) =c(O,O,I) =1 

For each of these nonepistatic viability regimes, the weights { c (7) } depend on 
the number of loci exhibiting differential selection (one in pure additive selection, 
two in the class Q[21 and three where pure multiplicative selection operates). 
Comparing the stability conditions in these three classes, we obtain the following: 

For a given set of recombination rates, then with more loci expressing differ- 
ential selection the H-W polymorphism is less likely to be stable. Equivalently, 
if the H-W polymorphism is stable with respect to multiplicative selection ( 
it is also stable with respect to the class C[zl, and when stable with respect to 

We render this result in schematic form in two cases of recombination patterns: 
( 1 ) no interference between the three loci 

(2) complete interference between the three loci, i.e., r3=rI+r2. 

_____- 

~ _ _ _ _ _ _  r3 > ro . -___ 

and all other c’s zero. 

it is also stable for additive selection ell]. 

r3 = rl ( 1-r2) + rz ( I--rl) = rI + rz - 2r1rz ; 

In both cases there are only two effective recombination frequencies, which we 
observe to be rl and r2. Where r1 and rz obey (49), the same holds for r3. The sta- 
bility domains in both cases are displayed in Figure 1. 

SUMMARY AND DISCUSSION 

There are two classical prototype forms of nonepistatic selection-the multi- 
plicative and the additive models. The fitness value of a given genotype is 
attributable to the independent effects conferred by the separate loci in either a 
multiplicative o r  additive sense. The dynamic and equilibrium behavior for the 
multiplicative as against the additive model is significantly divergent, especially 
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N u l t i p l i c n t i v e  ,Selec:ion Selection .Additive Selection 

c 

‘ To 4 k r, 

FIGURE 1.-The shaded area is a schematic comparison of the domains of recombination 
frequencies (r1,r2) for which the H-W polymorphism is stable with respect to the specified 
selection regime ( CL?, and 

in the presence of tight linkage (see KARLIN 1975, 1977). The existence of 
epistasis is generally understood to signify that the fitness of a genotype cannot 
be partitioned into contributions of mixed additive and multiplicative effects along 
a series of loci. We introduced (detailed in section 2) a generalized formulation 
of nonepistasis that embraces mixed multiplicative and additive regimes where 
the fitness expression involves combinations of nonepistatic selection differentials 
and neutral effects distributed among groupings of loci. In this framework, 
measures of epistasis should refer to the degree of departure from the generalized 
nonepistatic selection mode. 

Nonepistasis (referring to a class of selection regimes) and genic nonassocia- 
tions (pertaining to characterizations and classifications of gamete configur- 
ations) convey activities and measurements at different levels of the genetic 
process. Nevertheless, these concepts are intimately connected. In particular, we 
have established (Results 1 to 3 of section 3 )  that H-W equilibria arise for 
nonepistatic selection models, under conditions of loose linkage. 

The precise stability criterion of a H-W polymorphic equilibrium generally 
depends on the type of nonepistasis operating and the extent of recombination 
involved. For straight multiplicative nonepistasis, a H-W polymorphism can be 
stable only under the condition that “heterosis” (the existence of a stable poly- 
morphism) prevails at each component locus and provided that the recombination 
rates are sufficiently large (Result 11). On the other hand, in the additive case 
heterosis at each separate locus already assures that the H-W equilibrium is 
stable for any set of non-zero recombination frequencies. For tlie generalized 
nonepistatic selection regime where the effects are not exclusively multiplicative 
over loci, stability for a H-W polymorphic equilibrium generally still requires 
positive recombination among the loci, but at a reduced rate compared to the 
straight multiplicative model. 

The nature of stable equilibria with tight linkage for multiplicative nonepi- 
stasis, in sharp contrast to H-W type of equilibria, usually entails a partial group 
of gamete types each represented in moderate frequencies, while the remaining 
gamete types appear in trace amounts. The precise results fall back on a careful 
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description of the nature of the stable equilibria extant for certain multiallele 
one-locus selection models. When the H-W equilibrium is not stable for absolute 
linkage, the multiallele one-locus theory points up the existence of a multiplicity 
of stable boundary and approximate boundary equilibria (see KARLIN 1977). 

Subject to an extended nonepistatic fitness selection form, the H-W poly- 
morphism is always stable for free recombination, but never stable with tight 
linkage when the fitness regime involves at least two loci contributing multipli- 
cative fitness factors. The contrapositive form of this statement conveys the 
following implication. Where a population equilibrium exhibits approximately 
H-W proportions and there is evidence that the loci involved are tightly linked, 
and if some selection balance is implicated, then the selection operating entails 
some degree or  form of epistasis. 

Additive and/or neutral components of the generalized nonepistatic fitness 
regime, relative to a straight multiplicative term, require a diminished recombi- 
nation mechanism in order to maintain a stable H-W polymorphism. Equiva- 
lently, the addition of more contrast to the pure multiplicative selection com- 
ponent with the same level of recombination can have a destabilizing effect 
relative to the H-W equilibrium. 

Another facet of interest concerns the rate of convergence to a stable H-W 
polymorphism. One might expect the introduction of neutral terms to decelerate 
the rate of convergence. This inference is generally not valid. Already in the 
simplest two-locus case, we can produce examples entailing an interval of recom- 
bination frequencies in which the H-W polymorphism is stable, whereas with 
the introduction of “more” neutral effects, the rate of convergence to the poly- 
morphism is slowed. 

A H-W equilibrium array is characterized by zero associations of all orders. 
A possible implication of this fact is as follows. A recorded set of gamete fre- 
quencies entailing significant non-zero associations, coupled to some independent 
evidence of loose linkage among the loci involved, essentially abrogates a general- 
ized nonepistatic selection linkage balance as a mechanism to account for the 
observed population state. Of course, there are other possible causes for linkage 
disequilibrium that need to be weighed in the total picture. These include random 
genetic drift effects, admixture and migration among two or more populations, 
nonrandom mating patterns, etc. 

A stable H-W polymorphic equilibrium for  some recombination level remains 
stable with “more recombination”. This concept is circumscribed in Definitions 
1 and 2 of Section 4. 

We are happy to acknowledge useful suggestions on the manuscript from J. ROUGHGARDEN, 
B. WEIR, W. EWENS and M. FELDMAN 
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