Abstract
Electropermeabilized human endothelial cells (ECV-304) were used to study the regulation of tissue transglutaminase (tTGase) activity in the intracellular environment. An ELSA (enzyme-linked sorbent assay) plate assay was developed for intracellular tTGase activity, using the incorporation of a biotinylated primary amine, 5-¿[(N-biotinoylamino)hexanoyl]amino¿pentylamine(biotin-x-cadaveri ne; BTC), into endogenous protein substrates of tTGase. This incorporation process was inhibited by competitive inhibitors of tTGase, cystamine and monodansylcadaverine, in a dose-dependent manner. Over a 30 min period tTGase and its protein substrates did not leak out of the cell, and no incorporation of BTC occurred in unpermeabilized cells, indicating the reaction to be intracellular. In the presence of 10 nM or 10 muM CA2+, when nucleotides ATP and GTP were added at concentrations mimicking cytosolic levels, tTGase activity was decreased virtually to zero. Only at 100 muM Ca2+, when nucleotides were low or absent was tTGase activity observed. Under these conditions a variety of proteins was labelled by the enzyme, with the major labelling found in a protein of molecular mass around 51 kDa when analysed by SDS/PAGE/Western blotting.
Full Text
The Full Text of this article is available as a PDF (315.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achyuthan K. E., Greenberg C. S. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem. 1987 Feb 5;262(4):1901–1906. [PubMed] [Google Scholar]
- Aeschlimann D., Wetterwald A., Fleisch H., Paulsson M. Expression of tissue transglutaminase in skeletal tissues correlates with events of terminal differentiation of chondrocytes. J Cell Biol. 1993 Mar;120(6):1461–1470. doi: 10.1083/jcb.120.6.1461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ali S. M., Geisow M. J., Burgoyne R. D. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Nature. 1989 Jul 27;340(6231):313–315. doi: 10.1038/340313a0. [DOI] [PubMed] [Google Scholar]
- Baudet S., Hove-Madsen L., Bers D. M. How to make and use calcium-specific mini- and microelectrodes. Methods Cell Biol. 1994;40:93–113. [PubMed] [Google Scholar]
- Bergamini C. M. GTP modulates calcium binding and cation-induced conformational changes in erythrocyte transglutaminase. FEBS Lett. 1988 Nov 7;239(2):255–258. doi: 10.1016/0014-5793(88)80928-1. [DOI] [PubMed] [Google Scholar]
- Breitwieser G. E., Szabo G. Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. J Gen Physiol. 1988 Apr;91(4):469–493. doi: 10.1085/jgp.91.4.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bungay P. J., Owen R. A., Coutts I. C., Griffin M. A role for transglutaminase in glucose-stimulated insulin release from the pancreatic beta-cell. Biochem J. 1986 Apr 1;235(1):269–278. doi: 10.1042/bj2350269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheek T. R. Spatial aspects of calcium signalling. J Cell Sci. 1989 Jun;93(Pt 2):211–216. doi: 10.1242/jcs.93.2.211. [DOI] [PubMed] [Google Scholar]
- Davies P. J., Davies D. R., Levitzki A., Maxfield F. R., Milhaud P., Willingham M. C., Pastan I. H. Transglutaminase is essential in receptor-mediated endocytosis of alpha 2-macroglobulin and polypeptide hormones. Nature. 1980 Jan 10;283(5743):162–167. doi: 10.1038/283162a0. [DOI] [PubMed] [Google Scholar]
- EADIE G. S. On the evaluation of the constants Vm and Km in enzyme reactions. Science. 1952 Dec 19;116(3025):688–688. doi: 10.1126/science.116.3025.688. [DOI] [PubMed] [Google Scholar]
- Facchiano F., Valtorta F., Benfenati F., Luini A. The transglutaminase hypothesis for the action of tetanus toxin. Trends Biochem Sci. 1993 Sep;18(9):327–329. doi: 10.1016/0968-0004(93)90066-v. [DOI] [PubMed] [Google Scholar]
- Fesus L., Thomazy V., Autuori F., Ceru M. P., Tarcsa E., Piacentini M. Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of transglutaminase action. FEBS Lett. 1989 Mar 13;245(1-2):150–154. doi: 10.1016/0014-5793(89)80210-8. [DOI] [PubMed] [Google Scholar]
- Folk J. E., Cole P. W. Mechanism of action of guinea pig liver transglutaminase. I. Purification and properties of the enzyme: identification of a functional cysteine essential for activity. J Biol Chem. 1966 Dec 10;241(23):5518–5525. [PubMed] [Google Scholar]
- Folk J. E., Finlayson J. S. The epsilon-(gamma-glutamyl)lysine crosslink and the catalytic role of transglutaminases. Adv Protein Chem. 1977;31:1–133. doi: 10.1016/s0065-3233(08)60217-x. [DOI] [PubMed] [Google Scholar]
- Fukuda K., Kojiro M., Chiu J. F. Cross-linked cytokeratin polypeptides in liver and hepatoma cells: possible association with the process of cell degeneration and death. Hepatology. 1993 Jan;17(1):118–124. [PubMed] [Google Scholar]
- Geisbuhler T., Altschuld R. A., Trewyn R. W., Ansel A. Z., Lamka K., Brierley G. P. Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ Res. 1984 May;54(5):536–546. doi: 10.1161/01.res.54.5.536. [DOI] [PubMed] [Google Scholar]
- Gentile V., Thomazy V., Piacentini M., Fesus L., Davies P. J. Expression of tissue transglutaminase in Balb-C 3T3 fibroblasts: effects on cellular morphology and adhesion. J Cell Biol. 1992 Oct;119(2):463–474. doi: 10.1083/jcb.119.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hand D., Elliott B. M., Griffin M. Expression of the cytosolic and particulate forms of transglutaminase during chemically induced rat liver carcinogenesis. Biochim Biophys Acta. 1988 Jun 30;970(2):137–145. doi: 10.1016/0167-4889(88)90172-3. [DOI] [PubMed] [Google Scholar]
- Horie M., Irisawa H. Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. J Physiol. 1989 Jan;408:313–332. doi: 10.1113/jphysiol.1989.sp017461. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Howell T. W., Cockcroft S., Gomperts B. D. Essential synergy between Ca2+ and guanine nucleotides in exocytotic secretion from permeabilized rat mast cells. J Cell Biol. 1987 Jul;105(1):191–197. doi: 10.1083/jcb.105.1.191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jeon W. M., Lee K. N., Birckbichler P. J., Conway E., Patterson M. K., Jr Colorimetric assay for cellular transglutaminase. Anal Biochem. 1989 Oct;182(1):170–175. doi: 10.1016/0003-2697(89)90737-9. [DOI] [PubMed] [Google Scholar]
- Johnson T. S., Knight C. R., el-Alaoui S., Mian S., Rees R. C., Gentile V., Davies P. J., Griffin M. Transfection of tissue transglutaminase into a highly malignant hamster fibrosarcoma leads to a reduced incidence of primary tumour growth. Oncogene. 1994 Oct;9(10):2935–2942. [PubMed] [Google Scholar]
- Jones P. M., Persaud S. J., Howell S. L. Ca2(+)-induced insulin secretion from electrically permeabilized islets. Loss of the Ca2(+)-induced secretory response is accompanied by loss of Ca2(+)-induced protein phosphorylation. Biochem J. 1992 Aug 1;285(Pt 3):973–978. doi: 10.1042/bj2850973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleineke J., Düls C., Söling H. D. Subcellular compartmentation of guanine nucleotides and functional relationships between the adenine and guanine nucleotide systems in isolated hepatocytes. FEBS Lett. 1979 Nov 1;107(1):198–202. doi: 10.1016/0014-5793(79)80494-9. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Scrutton M. C. Gaining access to the cytosol: the technique and some applications of electropermeabilization. Biochem J. 1986 Mar 15;234(3):497–506. doi: 10.1042/bj2340497. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korner G., Schneider D. E., Purdon M. A., Bjornsson T. D. Bovine aortic endothelial cell transglutaminase. Enzyme characterization and regulation of activity. Biochem J. 1989 Sep 1;262(2):633–641. doi: 10.1042/bj2620633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lee K. N., Birckbichler P. J., Patterson M. K., Jr GTP hydrolysis by guinea pig liver transglutaminase. Biochem Biophys Res Commun. 1989 Aug 15;162(3):1370–1375. doi: 10.1016/0006-291x(89)90825-5. [DOI] [PubMed] [Google Scholar]
- Lorand L., Parameswaran K. N., Stenberg P., Tong Y. S., Velasco P. T., Jönsson N. A., Mikiver L., Moses P. Specificity of guinea pig liver transglutaminase for amine substrates. Biochemistry. 1979 May 1;18(9):1756–1765. doi: 10.1021/bi00576a019. [DOI] [PubMed] [Google Scholar]
- Maccioni R. B., Seeds N. W. Transglutaminase and neuronal differentiation. Mol Cell Biochem. 1986 Feb;69(2):161–168. doi: 10.1007/BF00224763. [DOI] [PubMed] [Google Scholar]
- Martinez J., Chalupowicz D. G., Roush R. K., Sheth A., Barsigian C. Transglutaminase-mediated processing of fibronectin by endothelial cell monolayers. Biochemistry. 1994 Mar 8;33(9):2538–2545. doi: 10.1021/bi00175a024. [DOI] [PubMed] [Google Scholar]
- Mian S., el Alaoui S., Lawry J., Gentile V., Davies P. J., Griffin M. The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett. 1995 Aug 14;370(1-2):27–31. doi: 10.1016/0014-5793(95)00782-5. [DOI] [PubMed] [Google Scholar]
- Nakaoka H., Perez D. M., Baek K. J., Das T., Husain A., Misono K., Im M. J., Graham R. M. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science. 1994 Jun 10;264(5165):1593–1596. doi: 10.1126/science.7911253. [DOI] [PubMed] [Google Scholar]
- Siefring G. E., Jr, Apostol A. B., Velasco P. T., Lorand L. Enzymatic basis for the Ca2+-induced cross-linking of membrane proteins in intact human erythrocytes. Biochemistry. 1978 Jun 27;17(13):2598–2604. doi: 10.1021/bi00606a022. [DOI] [PubMed] [Google Scholar]
- Smethurst P. A., Bungay P. J., Griffin M. The use of a biotin-labelled amine to identify endogenous substrates of transglutaminase in pancreatic islets. Biochem Soc Trans. 1993 Nov;21(4):424S–424S. doi: 10.1042/bst021424s. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Sawasaki Y., Hata J., Mukai K., Goto T. Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell Dev Biol. 1990 Mar;26(3 Pt 1):265–274. doi: 10.1007/BF02624456. [DOI] [PubMed] [Google Scholar]
- Wollheim C. B., Ullrich S., Meda P., Vallar L. Regulation of exocytosis in electrically permeabilized insulin-secreting cells. Evidence for Ca2+ dependent and independent secretion. Biosci Rep. 1987 May;7(5):443–454. doi: 10.1007/BF01362507. [DOI] [PubMed] [Google Scholar]
- Woods N. M., Cuthbertson K. S., Cobbold P. H. Repetitive transient rises in cytoplasmic free calcium in hormone-stimulated hepatocytes. Nature. 1986 Feb 13;319(6054):600–602. doi: 10.1038/319600a0. [DOI] [PubMed] [Google Scholar]
- Yaseen M. A., Pedley K. C., Howell S. L. Regulation of insulin secretion from islets of Langerhans rendered permeable by electric discharge. Biochem J. 1982 Jul 15;206(1):81–87. doi: 10.1042/bj2060081. [DOI] [PMC free article] [PubMed] [Google Scholar]