Abstract
Octopus glutathione transferase (GST) was enzymically active in aerosol-OT [sodium bis-(2-ethylhexyl)sulphosuccinate]/iso-octane reverse micelles albeit with lowered catalytic constant (kcat). The enzyme reaction rate was found to be dependent on the [H2O]/[surfactant] ratio (omega(o)) of the system with maximum rate observed at omega(o) 13.88, which corresponded to vesicles with a core volume of 64 nm3. According to the physical examinations, a vesicle of this size is barely large enough to accommodate a monomeric enzyme subunit. Dissociation of the enzyme in reverse micelles was confirmed by cross-linking of the associated subunits with glutaraldehyde and separation of the monomers and dimers with electrophoresis in the presence of SDS. The kinetic properties of the enzyme were investigated by steady-state kinetic analysis. Both GSH and 1-chloro-2,4-dinitrobenzene (CDNB) showed substrate inhibition and the Michaelis constant for CDNB was increased by 36-fold to 11.05 mM in reverse micelles. Results on the initial-velocity and product-inhibition studies indicate that the octopus GST conforms to a steady-state sequential random Bi Bi mechanism. The results from a log kcat versus pH plot suggest that amino acid residues with pKa values of 6.56 0.07 and 8.81 0.17 should be deprotonated to give optimum catalytic function. In contrast, the amino acid residue with a pKa value of 9.69 0.16 in aqueous solution had to be protonated for the reaction to proceed. We propose that the pKa1 (6.56) is that for the enzyme-bound GSH, which has a pKa value lowered by 1.40-1.54 pH units compared with that of free GSH in reverse micelles. The most probable candidate for the observed pKa2 (8.81) is Tyr7 of GST. The pKa of Tyr7 is 0.88 pH unit lower than that in aqueous solution and is about 2 pH units below the normal tyrosine. This tyrosyl residue may act as a base catalyst facilitating the dissociation of enzyme-bound GSH. The possible interaction of GST with plasma membrane in vivo is discussed.
Full Text
The Full Text of this article is available as a PDF (472.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aceto A., Caccuri A. M., Sacchetta P., Bucciarelli T., Dragani B., Rosato N., Federici G., Di Ilio C. Dissociation and unfolding of Pi-class glutathione transferase. Evidence for a monomeric inactive intermediate. Biochem J. 1992 Jul 1;285(Pt 1):241–245. doi: 10.1042/bj2850241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong R. N. Glutathione S-transferases: reaction mechanism, structure, and function. Chem Res Toxicol. 1991 Mar-Apr;4(2):131–140. doi: 10.1021/tx00020a001. [DOI] [PubMed] [Google Scholar]
- Armstrong R. N. Glutathione S-transferases: structure and mechanism of an archetypical detoxication enzyme. Adv Enzymol Relat Areas Mol Biol. 1994;69:1–44. doi: 10.1002/9780470123157.ch1. [DOI] [PubMed] [Google Scholar]
- Atkins W. M., Wang R. W., Bird A. W., Newton D. J., Lu A. Y. The catalytic mechanism of glutathione S-transferase (GST). Spectroscopic determination of the pKa of Tyr-9 in rat alpha 1-1 GST. J Biol Chem. 1993 Sep 15;268(26):19188–19191. [PubMed] [Google Scholar]
- Boyer T. D., Kempner E. S. Effect of subunit interactions on enzymatic activity of glutathione S-transferases: a radiation inactivation study. Anal Biochem. 1992 Nov 15;207(1):51–57. doi: 10.1016/0003-2697(92)90498-v. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bru R., Sánchez-Ferrer A., Garcia-Carmona F. A theoretical study on the expression of enzymic activity in reverse micelles. Biochem J. 1989 Apr 15;259(2):355–361. doi: 10.1042/bj2590355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang G. G., Huang T. M., Huang S. M., Chou W. Y. Dissociation of pigeon-liver malic enzyme in reverse micelles. Eur J Biochem. 1994 Nov 1;225(3):1021–1027. doi: 10.1111/j.1432-1033.1994.1021b.x. [DOI] [PubMed] [Google Scholar]
- Chang G. G., Shiao S. L. Possible kinetic mechanism of human placental alkaline phosphatase in vivo as implemented in reverse micelles. Eur J Biochem. 1994 Mar 15;220(3):861–870. doi: 10.1111/j.1432-1033.1994.tb18689.x. [DOI] [PubMed] [Google Scholar]
- Chang G. G., Tsai L. N., Tang S. S., Wang T. C. Purification and kinetic mechanism of the glutathione S-transferase from C6/36, an Aedes albopictus cell line. Arch Biochem Biophys. 1994 Apr;310(1):134–143. doi: 10.1006/abbi.1994.1149. [DOI] [PubMed] [Google Scholar]
- Danielson U. H., Mannervik B. Kinetic independence of the subunits of cytosolic glutathione transferase from the rat. Biochem J. 1985 Oct 15;231(2):263–267. doi: 10.1042/bj2310263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dirr H. W., Reinemer P. Equilibrium unfolding of class pi glutathione S-transferase. Biochem Biophys Res Commun. 1991 Oct 15;180(1):294–300. doi: 10.1016/s0006-291x(05)81291-4. [DOI] [PubMed] [Google Scholar]
- Dirr H., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur J Biochem. 1994 Mar 15;220(3):645–661. doi: 10.1111/j.1432-1033.1994.tb18666.x. [DOI] [PubMed] [Google Scholar]
- García-Sáez I., Párraga A., Phillips M. F., Mantle T. J., Coll M. Molecular structure at 1.8 A of mouse liver class pi glutathione S-transferase complexed with S-(p-nitrobenzyl)glutathione and other inhibitors. J Mol Biol. 1994 Apr 1;237(3):298–314. doi: 10.1006/jmbi.1994.1232. [DOI] [PubMed] [Google Scholar]
- Graminski G. F., Zhang P. H., Sesay M. A., Ammon H. L., Armstrong R. N. Formation of the 1-(S-glutathionyl)-2,4,6-trinitrocyclohexadienate anion at the active site of glutathione S-transferase: evidence for enzymic stabilization of sigma-complex intermediates in nucleophilic aromatic substitution reactions. Biochemistry. 1989 Jul 25;28(15):6252–6258. doi: 10.1021/bi00441a017. [DOI] [PubMed] [Google Scholar]
- Huang T. M., Chang G. G. Characterization of the tetramer-dimer-monomer equilibrium of the enzymatically active subunits of pigeon liver malic enzyme. Biochemistry. 1992 Dec 22;31(50):12658–12664. doi: 10.1021/bi00165a016. [DOI] [PubMed] [Google Scholar]
- Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992 Nov;17(11):463–468. doi: 10.1016/0968-0004(92)90489-v. [DOI] [PubMed] [Google Scholar]
- Jakoby W. B., Ziegler D. M. The enzymes of detoxication. J Biol Chem. 1990 Dec 5;265(34):20715–20718. [PubMed] [Google Scholar]
- Ji X., von Rosenvinge E. C., Johnson W. W., Tomarev S. I., Piatigorsky J., Armstrong R. N., Gilliland G. L. Three-dimensional structure, catalytic properties, and evolution of a sigma class glutathione transferase from squid, a progenitor of the lens S-crystallins of cephalopods. Biochemistry. 1995 Apr 25;34(16):5317–5328. doi: 10.1021/bi00016a003. [DOI] [PubMed] [Google Scholar]
- Kabanov A. V., Klyachko N. L., Nametkin S. N., Merker S., Zaroza A. V., Bunik V. I., Ivanov M. V., Levashov A. V. Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors. Protein Eng. 1991 Dec;4(8):1009–1017. doi: 10.1093/protein/4.8.1009. [DOI] [PubMed] [Google Scholar]
- Laane C., Hilhorst R., Veeger C. Design of reversed micellar media for the enzymatic synthesis of apolar compounds. Methods Enzymol. 1987;136:216–229. doi: 10.1016/s0076-6879(87)36022-7. [DOI] [PubMed] [Google Scholar]
- Levashov A. V., Rariy R. V., Martinek K., Klyachko N. L. Artificially glycosylated alpha-chymotrypsin in reversed micelles of Aerosol OT in octane. A new approach to elucidation of the role of carbohydrate moieties in glycoproteins. FEBS Lett. 1993 Dec 28;336(3):385–388. doi: 10.1016/0014-5793(93)80842-i. [DOI] [PubMed] [Google Scholar]
- Liu L. F., Hong J. L., Tsai S. P., Hsieh J. C., Tam M. F. Reversible modification of rat liver glutathione S-transferase 3-3 with 1-chloro-2,4-dinitrobenzene: specific labelling of Tyr-115. Biochem J. 1993 Nov 15;296(Pt 1):189–197. doi: 10.1042/bj2960189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luisi P. L., Giomini M., Pileni M. P., Robinson B. H. Reverse micelles as hosts for proteins and small molecules. Biochim Biophys Acta. 1988 Feb 24;947(1):209–246. doi: 10.1016/0304-4157(88)90025-1. [DOI] [PubMed] [Google Scholar]
- Luisi P. L., Magid L. J. Solubilization of enzymes and nucleic acids in hydrocarbon micellar solutions. CRC Crit Rev Biochem. 1986;20(4):409–474. doi: 10.3109/10409238609081999. [DOI] [PubMed] [Google Scholar]
- Luisi P. L., Steinmann-Hofmann B. Activity and conformation of enzymes in reverse micellar solutions. Methods Enzymol. 1987;136:188–216. doi: 10.1016/s0076-6879(87)36021-5. [DOI] [PubMed] [Google Scholar]
- Mannervik B., Danielson U. H. Glutathione transferases--structure and catalytic activity. CRC Crit Rev Biochem. 1988;23(3):283–337. doi: 10.3109/10409238809088226. [DOI] [PubMed] [Google Scholar]
- Martinek K., Klyachko N. L., Kabanov A. V., Khmelnitsky YuL, Levashov A. V. The second E.C. Slater lecture. Micellar enzymology: its relation to membranology. Biochim Biophys Acta. 1989 Jun 6;981(2):161–172. doi: 10.1016/0005-2736(89)90024-2. [DOI] [PubMed] [Google Scholar]
- Martinek K., Levashov A. V., Klyachko N., Khmelnitski Y. L., Berezin I. V. Micellar enzymology. Eur J Biochem. 1986 Mar 17;155(3):453–468. doi: 10.1111/j.1432-1033.1986.tb09512.x. [DOI] [PubMed] [Google Scholar]
- Pabst M. J., Habig W. H., Jakoby W. B. Glutathione S-transferase A. A novel kinetic mechanism in which the major reaction pathway depends on substrate concentration. J Biol Chem. 1974 Nov 25;249(22):7140–7147. [PubMed] [Google Scholar]
- Perrella F. W. EZ-FIT: a practical curve-fitting microcomputer program for the analysis of enzyme kinetic data on IBM-PC compatible computers. Anal Biochem. 1988 Nov 1;174(2):437–447. doi: 10.1016/0003-2697(88)90042-5. [DOI] [PubMed] [Google Scholar]
- Ricci G., Lo Bello M., Caccurri A. M., Pastore A., Nuccetelli M., Parker M. W., Federici G. Site-directed mutagenesis of human glutathione transferase P1-1. Mutation of Cys-47 induces a positive cooperativity in glutathione transferase P1-1. J Biol Chem. 1995 Jan 20;270(3):1243–1248. doi: 10.1074/jbc.270.3.1243. [DOI] [PubMed] [Google Scholar]
- Rushmore T. H., Pickett C. B. Glutathione S-transferases, structure, regulation, and therapeutic implications. J Biol Chem. 1993 Jun 5;268(16):11475–11478. [PubMed] [Google Scholar]
- Sinning I., Kleywegt G. J., Cowan S. W., Reinemer P., Dirr H. W., Huber R., Gilliland G. L., Armstrong R. N., Ji X., Board P. G. Structure determination and refinement of human alpha class glutathione transferase A1-1, and a comparison with the Mu and Pi class enzymes. J Mol Biol. 1993 Jul 5;232(1):192–212. doi: 10.1006/jmbi.1993.1376. [DOI] [PubMed] [Google Scholar]
- Tang S. S., Chang G. G. Steady-state kinetics and chemical mechanism of octopus hepatopancreatic glutathione transferase. Biochem J. 1995 Jul 1;309(Pt 1):347–353. doi: 10.1042/bj3090347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tang S. S., Lin C. C., Chang G. G. Isolation and characterization of octopus hepatopancreatic glutathione S-transferase. Comparison of digestive gland enzyme with lens S-crystallin. J Protein Chem. 1994 Oct;13(7):609–618. doi: 10.1007/BF01890459. [DOI] [PubMed] [Google Scholar]
- Tyrakowska B., Verhaert R. M., Hilhorst R., Veeger C. Enzyme kinetics in reversed micelles. 3. Behaviour of 20 beta-hydroxysteroid dehydrogenase. Eur J Biochem. 1990 Jan 12;187(1):81–88. doi: 10.1111/j.1432-1033.1990.tb15279.x. [DOI] [PubMed] [Google Scholar]
- Verhaert R. M., Hilhorst R., Vermuë M., Schaafsma T. J., Veeger C. Description of enzyme kinetics in reversed micelles. 1. Theory. Eur J Biochem. 1990 Jan 12;187(1):59–72. doi: 10.1111/j.1432-1033.1990.tb15277.x. [DOI] [PubMed] [Google Scholar]
- Waks M. Proteins and peptides in water-restricted environments. Proteins. 1986 Sep;1(1):4–15. doi: 10.1002/prot.340010104. [DOI] [PubMed] [Google Scholar]