Abstract
Following a 1 h incubation of human platelets with low-density lipoprotein (LDL) labelled in the apoprotein fraction (125I-apoB) or in phospholipid fractions [14C-labelled phosphatidylcholine (PC), phosphatidylethanolamine (PE) or sphingomyelin (SM)], the percentage of total 14C associated with the cells was about 3-fold higher than the percentage of 125I. Differences in temperature sensitivity also indicated differential interactions of phospholipids and apoprotein with platelets. In order to assess the amount of [14C]phospholipid transferred from LDL or high-density lipoprotein (HDL) to the cells, the quantity of bound lipoproteins was estimated by adding an excess of unlabelled lipoprotein, or by selectively degrading LDL- and HDL-associated [14C]PC and [14C]PE with phospholipase C. Incubation of platelets with LDL or HDL containing pyrenedecanoic acid-labelled PC or SM (py-PC, py-SM) increased pyrene monomer fluorescence, indicating incorporation of the phospholipids into platelets. With HDl as donor, incorporation of py-SM was greater than uptake of py-PC. Pretreating platelets with elastase dose-dependently inhibited uptake of py-SM and py-PC. Treatment of cells with phospholipase C indicated that the uptake of [14C]PC by platelets, and not the binding of lipoproteins to the cells, was partially inhibited by elastase. In conclusion, LDL and HDL rapidly deliver SM, PC and PE to platelets. Incorporation of LDL-derived phospholipids into platelets is unlikely to be mediated by endocytosis of lipoprotein particles. The uptake of the two choline-containing phospholipids appears to require the presence of specialized platelet membrane protein(s).
Full Text
The Full Text of this article is available as a PDF (490.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andrews H. E., Aitken J. W., Hassall D. G., Skinner V. O., Bruckdorfer K. R. Intracellular mechanisms in the activation of human platelets by low-density lipoproteins. Biochem J. 1987 Mar 1;242(2):559–564. doi: 10.1042/bj2420559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Broekman M. J., Handin R. I., Derksen A., Cohen P. Distribution of phospholipids, fatty acids, and platelet factor 3 activity among subcellular fractions of human platelets. Blood. 1976 Jun;47(6):963–971. [PubMed] [Google Scholar]
- Brown R. E. Spontaneous transfer of lipids between membranes. Subcell Biochem. 1990;16:333–363. doi: 10.1007/978-1-4899-1621-1_11. [DOI] [PubMed] [Google Scholar]
- Engelmann B., Streich S., Schönthier U. M., Richter W. O., Duhm J. Changes of membrane phospholipid composition of human erythrocytes in hyperlipidemias. I. Increased phosphatidylcholine and reduced sphingomyelin in patients with elevated levels of triacylglycerol-rich lipoproteins. Biochim Biophys Acta. 1992 Nov 11;1165(1):32–37. doi: 10.1016/0005-2760(92)90072-4. [DOI] [PubMed] [Google Scholar]
- Gorges R., Hofer G., Sommer A., Stütz H., Grillhofer H., Kostner G. M., Paltauf F., Hermetter A. Transfer of phospholipase A-resistant pyrene-dialkyl-glycerophosphocholine to plasma lipoproteins: differences between Lp[a] and LDL. J Lipid Res. 1995 Feb;36(2):251–259. [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassall D. G., Owen J. S., Bruckdorfer K. R. The aggregation of isolated human platelets in the presence of lipoproteins and prostacyclin. Biochem J. 1983 Oct 15;216(1):43–49. doi: 10.1042/bj2160043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmsen H., Hindenes J. O., Fukami M. Glycerophospholipid metabolism: back to the future. Thromb Res. 1992 Aug 1;67(3):313–323. doi: 10.1016/0049-3848(92)90006-v. [DOI] [PubMed] [Google Scholar]
- Jürgens G., Hoff H. F., Chisolm G. M., 3rd, Esterbauer H. Modification of human serum low density lipoprotein by oxidation--characterization and pathophysiological implications. Chem Phys Lipids. 1987 Nov-Dec;45(2-4):315–336. doi: 10.1016/0009-3084(87)90070-3. [DOI] [PubMed] [Google Scholar]
- Koller E., Koller F., Binder B. R. Purification and identification of the lipoprotein-binding proteins from human blood platelet membrane. J Biol Chem. 1989 Jul 25;264(21):12412–12418. [PubMed] [Google Scholar]
- Koller E., Koller F. Binding characteristics of homologous plasma lipoproteins to human platelets. Methods Enzymol. 1992;215:383–398. doi: 10.1016/0076-6879(92)15078-q. [DOI] [PubMed] [Google Scholar]
- Koller E., Koller F., Doleschel W. Specific binding sites on human blood platelets for plasma lipoproteins. Hoppe Seylers Z Physiol Chem. 1982 Apr;363(4):395–405. doi: 10.1515/bchm2.1982.363.1.395. [DOI] [PubMed] [Google Scholar]
- Kornecki E., Ehrlich Y. H., De Mars D. D., Lenox R. H. Exposure of fibrinogen receptors in human platelets by surface proteolysis with elastase. J Clin Invest. 1986 Mar;77(3):750–756. doi: 10.1172/JCI112370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kornecki E., Ehrlich Y. H., Egbring R., Gramse M., Seitz R., Eckardt A., Lukasiewicz H., Niewiarowski S. Granulocyte-platelet interactions and platelet fibrinogen receptor exposure. Am J Physiol. 1988 Sep;255(3 Pt 2):H651–H658. doi: 10.1152/ajpheart.1988.255.3.H651. [DOI] [PubMed] [Google Scholar]
- Malle E., Schwengerer E., Paltauf F., Hermetter A. Transfer of pyrene-labelled diacyl-, alkylacyl-, and alkenylacyl-glycerophospholipids from vesicles to human blood platelets. Biochim Biophys Acta. 1994 Jan 3;1189(1):61–64. doi: 10.1016/0005-2736(94)90280-1. [DOI] [PubMed] [Google Scholar]
- Mazurov A. V., Preobrazhensky S. N., Leytin V. L., Repin V. S., Smirnov V. N. Study of low density lipoprotein interaction with platelets by flow cytofluorimetry. FEBS Lett. 1982 Jan 25;137(2):319–322. doi: 10.1016/0014-5793(82)80375-x. [DOI] [PubMed] [Google Scholar]
- Morton R. E., Zilversmit D. B. A plasma inhibitor of triglyceride and cholesteryl ester transfer activities. J Biol Chem. 1981 Dec 10;256(23):11992–11995. [PubMed] [Google Scholar]
- Nozawa Y., Nakashima S., Nagata K. Phospholipid-mediated signaling in receptor activation of human platelets. Biochim Biophys Acta. 1991 Apr 3;1082(3):219–238. doi: 10.1016/0005-2760(91)90197-p. [DOI] [PubMed] [Google Scholar]
- Pownall H. J., Smith L. C. Pyrene-labeled lipids: versatile probes of membrane dynamics in vitro and in living cells. Chem Phys Lipids. 1989 Jun;50(3-4):191–211. doi: 10.1016/0009-3084(89)90050-9. [DOI] [PubMed] [Google Scholar]
- Selak M. A. Neutrophil elastase potentiates cathepsin G-induced platelet activation. Thromb Haemost. 1992 Nov 10;68(5):570–576. [PubMed] [Google Scholar]
- Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
- Wicki A. N., Clemetson K. J. Structure and function of platelet membrane glycoproteins Ib and V. Effects of leukocyte elastase and other proteases on platelets response to von Willebrand factor and thrombin. Eur J Biochem. 1985 Nov 15;153(1):1–11. doi: 10.1111/j.1432-1033.1985.tb09259.x. [DOI] [PubMed] [Google Scholar]