Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):995–1000. doi: 10.1042/bj3150995

Marked alteration of proteoglycan metabolism in cholesterol-enriched human arterial smooth muscle cells.

P Vijayagopal 1, J E Figueroa 1, Q Guo 1, J D Fontenot 1, Z Tao 1
PMCID: PMC1217306  PMID: 8645189

Abstract

To elucidate the correlation between vascular cholesterol metabolism and proteoglycan (PrGl) biosynthesis, we investigated PrGl synthesis in human aortic smooth muscle cells (SMCs) after cholesterol enrichment with cationized low-density lipoproteins (LDL). Compared with normal SMCs, total PrGl synthesis by cholesterol-enriched cells decreased 2.4-fold (11874 +/- 530 d.p.m. per 10(5) cells compared with 4890 +/- 385 d.p.m. per 10(5) cells). This was the net result of a 6.9-fold reduction in medium PrGl (11000 +/- 490 d.p.m. per 10(5) cells compared with 1580 +/- 246 d.p.m. per 10(5) cells) and a 3.8-fold increase in cellular PrGl over controls (874 +/- 27 d.p.m. per 10(5) cells compared with 3310 +/- 193 d.p.m. per 10(5) cells). Prior incubation of SMCs with native LDL had no effect on PrGl synthesis by these cells. The decrease in PrGl synthesis in cholesterol-enriched cells correlated with a 90% and 20% reduction in the steady-state level of mRNA for biglycan and decorin respectively, and a virtual elimination of the steady-state level of mRNA for versican over controls. Despite the down-regulation of PrGl synthesis, cholesterol-loaded cells produced a 2-fold increase in a PrGl subfraction with high affinity for LDL. Compared with the corresponding PrGl subfraction from normal cells, that from the cholesterol-enriched cells exhibited increased charge density and a higher molecular mass and contained relatively larger proportions of chondroitin 6-sulphate and dermatan sulphate. These results show that PrGl metabolism is dramatically altered in cholesterol-enriched human SMCs.

Full Text

The Full Text of this article is available as a PDF (355.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asundi V., Cowan K., Matzura D., Wagner W., Dreher K. L. Characterization of extracellular matrix proteoglycan transcripts expressed by vascular smooth muscle cells. Eur J Cell Biol. 1990 Jun;52(1):98–104. [PubMed] [Google Scholar]
  2. Basu S. K., Goldstein J. L., Anderson G. W., Brown M. S. Degradation of cationized low density lipoprotein and regulation of cholesterol metabolism in homozygous familial hypercholesterolemia fibroblasts. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3178–3182. doi: 10.1073/pnas.73.9.3178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berenson G. S., Radhakrishnamurthy B., Srinivasan S. R., Vijayagopal P., Dalferes E. R., Jr, Sharma C. Recent advances in molecular pathology. Carbohydrate-protein macromolecules and arterial wall integrity--a role in atherogenesis. Exp Mol Pathol. 1984 Oct;41(2):267–287. doi: 10.1016/0014-4800(84)90043-1. [DOI] [PubMed] [Google Scholar]
  4. Camejo G., Fager G., Rosengren B., Hurt-Camejo E., Bondjers G. Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells. J Biol Chem. 1993 Jul 5;268(19):14131–14137. [PubMed] [Google Scholar]
  5. Camejo G. The interaction of lipids and lipoproteins with the intercellular matrix of arterial tissue: its possible role in atherogenesis. Adv Lipid Res. 1982;19:1–53. doi: 10.1016/b978-0-12-024919-0.50007-2. [DOI] [PubMed] [Google Scholar]
  6. Cizmeci-Smith G., Stahl R. C., Showalter L. J., Carey D. J. Differential expression of transmembrane proteoglycans in vascular smooth muscle cells. J Biol Chem. 1993 Sep 5;268(25):18740–18747. [PubMed] [Google Scholar]
  7. Dreher K. L., Asundi V., Matzura D., Cowan K. Vascular smooth muscle biglycan represents a highly conserved proteoglycan within the arterial wall. Eur J Cell Biol. 1990 Dec;53(2):296–304. [PubMed] [Google Scholar]
  8. Edwards I. J., Wagner W. D., Owens R. T. Macrophage secretory products selectively stimulate dermatan sulfate proteoglycan production in cultured arterial smooth muscle cells. Am J Pathol. 1990 Mar;136(3):609–621. [PMC free article] [PubMed] [Google Scholar]
  9. Fowler S., Shio H., Haley N. J. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations. Lab Invest. 1979 Oct;41(4):372–378. [PubMed] [Google Scholar]
  10. Gamble W., Vaughan M., Kruth H. S., Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res. 1978 Nov;19(8):1068–1070. [PubMed] [Google Scholar]
  11. Geer J. C., Haust M. D. Smooth muscle cells in atherosclerosis. Monogr Atheroscler. 1972;2(0):1–140. [PubMed] [Google Scholar]
  12. Gerrity R. G. The role of the monocyte in atherogenesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Pathol. 1981 May;103(2):181–190. [PMC free article] [PubMed] [Google Scholar]
  13. Goldstein J. L., Anderson R. G., Buja L. M., Basu S. K., Brown M. S. Overloading human aortic smooth muscle cells with low density lipoprotein-cholesteryl esters reproduces features of atherosclerosis in vitro. J Clin Invest. 1977 Jun;59(6):1196–1202. doi: 10.1172/JCI108744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gowda D. C., Bhavanandan V. P., Davidson E. A. Structures of O-linked oligosaccharides present in the proteoglycans secreted by human mammary epithelial cells. J Biol Chem. 1986 Apr 15;261(11):4935–4939. [PubMed] [Google Scholar]
  15. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  16. Hosenpud J. D., Chou S. W., Wagner C. R. Cytomegalovirus-induced regulation of major histocompatibility complex class I antigen expression in human aortic smooth muscle cells. Transplantation. 1991 Nov;52(5):896–903. doi: 10.1097/00007890-199111000-00027. [DOI] [PubMed] [Google Scholar]
  17. Hurt E., Camejo G. Effect of arterial proteoglycans on the interaction of LDL with human monocyte-derived macrophages. Atherosclerosis. 1987 Oct;67(2-3):115–126. doi: 10.1016/0021-9150(87)90272-3. [DOI] [PubMed] [Google Scholar]
  18. Pomerantz K. B., Hajjar D. P. Eicosanoid metabolism in cholesterol-enriched arterial smooth muscle cells: reduced arachidonate release with concomitant decrease in cyclooxygenase products. J Lipid Res. 1989 Aug;30(8):1219–1231. [PubMed] [Google Scholar]
  19. Ross R. The pathogenesis of atherosclerosis--an update. N Engl J Med. 1986 Feb 20;314(8):488–500. doi: 10.1056/NEJM198602203140806. [DOI] [PubMed] [Google Scholar]
  20. Saito H., Yamagata T., Suzuki S. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem. 1968 Apr 10;243(7):1536–1542. [PubMed] [Google Scholar]
  21. Salisbury B. G., Falcone D. J., Minick C. R. Insoluble low-density lipoprotein-proteoglycan complexes enhance cholesteryl ester accumulation in macrophages. Am J Pathol. 1985 Jul;120(1):6–11. [PMC free article] [PubMed] [Google Scholar]
  22. Schönherr E., Järveläinen H. T., Kinsella M. G., Sandell L. J., Wight T. N. Platelet-derived growth factor and transforming growth factor-beta 1 differentially affect the synthesis of biglycan and decorin by monkey arterial smooth muscle cells. Arterioscler Thromb. 1993 Jul;13(7):1026–1036. doi: 10.1161/01.atv.13.7.1026. [DOI] [PubMed] [Google Scholar]
  23. Schönherr E., Järveläinen H. T., Sandell L. J., Wight T. N. Effects of platelet-derived growth factor and transforming growth factor-beta 1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem. 1991 Sep 15;266(26):17640–17647. [PubMed] [Google Scholar]
  24. Seldin D. C., Seno N., Austen K. F., Stevens R. L. Analysis of polysulfated chondroitin disaccharides by high-performance liquid chromatography. Anal Biochem. 1984 Aug 15;141(1):291–300. doi: 10.1016/0003-2697(84)90459-7. [DOI] [PubMed] [Google Scholar]
  25. Srinivasan S. R., Vijayagopal P., Dalferes E. R., Jr, Abbate B., Radhakrishnamurthy B., Berenson G. S. Low density lipoprotein retention by aortic tissue. Contribution of extracellular matrix. Atherosclerosis. 1986 Dec;62(3):201–208. doi: 10.1016/0021-9150(86)90094-8. [DOI] [PubMed] [Google Scholar]
  26. Srinivasan S. R., Vijayagopal P., Eberle K., Radhakrishnamurthy B., Berenson G. S. Interaction of a high-affinity heparin subfraction with low-density lipoprotein stimulates cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1991 Jan 28;1081(2):188–196. doi: 10.1016/0005-2760(91)90025-d. [DOI] [PubMed] [Google Scholar]
  27. Srinivasan S. R., Xu J. H., Vijayagopal P., Radhakrishnamurthy B., Berenson G. S. Injury to the arterial wall of rabbits produces proteoglycan variants with enhanced low-density lipoprotein-binding property. Biochim Biophys Acta. 1993 Jun 12;1168(2):158–166. doi: 10.1016/0005-2760(93)90120-x. [DOI] [PubMed] [Google Scholar]
  28. Vijayagopal P. Enhanced synthesis and accumulation of proteoglycans in cholesterol-enriched arterial smooth muscle cells. Biochem J. 1993 Sep 1;294(Pt 2):603–611. doi: 10.1042/bj2940603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Vijayagopal P., Srinivasan S. R., Jones K. M., Radhakrishnamurthy B., Berenson G. S. Complexes of low-density lipoproteins and arterial proteoglycan aggregates promote cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1985 Dec 4;837(3):251–261. doi: 10.1016/0005-2760(85)90048-7. [DOI] [PubMed] [Google Scholar]
  30. Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Hemostatic properties and serum lipoprotein binding of a heparan sulfate proteoglycan from bovine aorta. Biochim Biophys Acta. 1983 Jul 5;758(1):70–83. doi: 10.1016/0304-4165(83)90011-9. [DOI] [PubMed] [Google Scholar]
  31. Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Interaction of serum lipoproteins and a proteoglycan from bovine aorta. J Biol Chem. 1981 Aug 10;256(15):8234–8241. [PubMed] [Google Scholar]
  32. Vijayagopal P., Srinivasan S. R., Radhakrishnamurthy B., Berenson G. S. Lipoprotein-proteoglycan complexes from atherosclerotic lesions promote cholesteryl ester accumulation in human monocytes/macrophages. Arterioscler Thromb. 1992 Feb;12(2):237–249. doi: 10.1161/01.atv.12.2.237. [DOI] [PubMed] [Google Scholar]
  33. Wight T. N. Cell biology of arterial proteoglycans. Arteriosclerosis. 1989 Jan-Feb;9(1):1–20. doi: 10.1161/01.atv.9.1.1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES