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The transforming growth factor β (TGF-β) family of growth

factors control proliferation, extracellular matrix synthesis and}
or differentiation in a wide variety of cells. However, the

molecular mechanisms governing ligand binding, receptor oligo-

merization and signal transduction remain incompletely under-

stood. In this study, we utilized a set of antibodies selective for

the extracellular and intracellular domains of the TGF-β type-II

receptor as probes to investigate the intrinsic kinase activity of

this receptor and its physical association in multimeric complexes

with type-I and type-III receptors. The type-II receptor immuno-

precipitated from human osteosarcoma cells exhibited autophos-

phorylation and casein kinase activity that was markedly stimul-

ated by polylysine yet was insensitive to heparin. Affinity cross-

linking of "#&I-TGF-β1 ligand to cellular receptors followed by

specific immunoprecipitation demonstrated that type-II receptors

form stable complexes with both type-I and type-III receptors

expressed on the surfaces of both human osteosarcoma cells and

INTRODUCTION

Secretory polypeptides of the transforming growth factor type β

(TGF-β) superfamily have profound effects on the physiology of

tissue development and repair [1], exerting potent control of

cellular proliferation, differentiation, cell adhesion and}or extra-

cellular matrix gene and protein expression in a variety of

different cell types [2]. Numerous studies have demonstrated a

role for TGF-β in wound healing [1] leading to the first clinical

applications of exogenous TGF-β [3] and the promise of future

utility in the repair of bone, surgical wound healing [4] and the

treatment of diabetic ulcers and burns [5]. Blocking or neutral-

izing endogenous TGF-β may also reduce dermal scarring during

the course of normal wound healing [6] and may ameliorate lung

fibrosis occurring in response to bleomycin [7].

Indeed, TGF-β produces a number of seemingly contrasting

effects, exerting either growth-promoting or -inhibitory in-

fluences, which depend largely on the type and}or the de-

velopmental status of the responding cells [2]. TGF-β is a potent

mitogen of early-stage fibroblasts and osteoblasts [2] ; however,

the molecular mechanisms by which TGF-β stimulates mes-

enchymal cell growth have not yet been fully defined. TGF-β is

also a potent growth inhibitor and immunosuppressive agent,

with potential clinical applications in the treatment of both
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rabbit chondrocytes. Pretreatment of the cultured cells with an

antibody directed against a distinct extracellular segment of the

type-II receptor (anti-TGF-β-IIR-NT) effectively blocked the
"#&I-TGF-β labelling of type-I receptors without preventing the

affinity labelling of type-II or type-III receptors, indicating a

selective disruption of the type-I}type-II hetero-oligomers. The

anti-TGF-β-IIR-NT antibodies also blocked the TGF-β-depen-

dent induction of the plasminogen activator inhibitor (PAI-1)

promoter observed in mink lung epithelial cells. However, the

same anti-TGF-β-IIR-NT antibodies did not prevent the charac-

teristic inhibition of cellular proliferation by TGF-β1, as de-

termined by [$H]thymidine incorporation into DNA. The selec-

tive perturbation of PAI-1 promoter induction versus cell-cycle-

negative regulation suggests that strategic disruption of TGF-β

type-I and -II receptor interactions can effectively alter specific

cellular responses to TGF-β signalling.

proliferative and autoimmune disorders [1]. In lung, TGF-β is a

potent inhibitor of cell-cycle progression in epithelial cells [8],

inhibits embryonic lung-branching morphogenesis and n-myc

expression [9] and is strongly implicated in the aetiology of

pulmonary fibrosis [10]. However, as with mesenchymal cell

mitogenesis, the specific mechanisms by which TGF-β exerts

these pleiotropic effects remain to be completely elucidated.

All three of the major TGF-β receptor types have been cloned

[11–13]. The type-III receptor [13–15], TGF-β-IIIR or beta-

glycan, is a transmembrane proteoglycan with a molecular mass

greater than 250 kDa which contains a short C-terminal cyto-

plasmic tail that is not expected to participate directly in TGF-

β signalling. Binding TGF-β through its extracellular protein

core rather than through its glycosaminglycan chains, the type-

III receptor appears to function by presenting TGF-β to the

type-II receptor (TGF-β-IIR) via physical interaction which

induces a higher affinity for TGF-β in TGF-β-IIR [14,15].

Antibodies directed against the C-terminus of TGF-β-IIR

immunoprecipitate "#&I-TGF-β-affinity-labelled TGF-β-IIIR and

TGF-β-IIR, without co-precipitation of the type-I receptor

(TGF-β-IR), demonstrating the presence of heterotypic TGF-β-

I and IIR receptor complexes [14,15].

TGF-β-IR and TGF-β-IIR share a common overall molecular

structure with sequence similarity in the extracellular cysteine-
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rich domains and the intracellular serine}threonine-specific pro-

tein kinase domains [11]. TGF-β-IR exhibits a molecular mass of

approx. 50–60 kDa, whereas TGF-β-IIR exhibits one of approx.

75–80 kDa, the size difference being attributed to extensions at

the N- and C-termini of mature TGF-β-IIR [12]. Both receptors

are involved in signalling through their intrinsic serine}threonine

kinase activity, as has been shown directly for TGF-β-IIR using

single-residue mutagenesis in the kinase domain [16]. More-

over, TGF-β-IR requires TGF-β-IIR in order to bind ligand,

and TGF-β-IR and TGF-β-IIR interact physically in hetero-

oligomeric complexes [16,17]. However, hetero-oligomeric re-

ceptor complexes have been observed in the absence of ligand,

and type-II receptors can also form stable homodimers in a

variety of mammalian cells. Thus, although the functional

specificities of the TGF-β-IR–TGF-β-IIR and TGF-β-IIR–TGF-

β-IIR complexes remain to be further characterized, it appears

that TGF-β-IIR plays a pivotal role in mediating TGF-β binding

and in orchestrating TGF-β responses.

Both TGF-β-IR and TGF-β-IIR mediate biological responses

by mechanisms involving their intrinsic kinase activities. Indeed,

the type-I receptor is transphosphorylated and activated by the

type-II receptor. Moreover, overexpression of dominant-negative

TGF-β-IIR mutants lacking the cytoplasmic signalling kinase

domain results in nearly complete loss of TGF-β-dependent

growth inhibition but does not affect TGF-β-dependent stimu-

lation of the synthesis of fibronectin, plasminogen activator

inhibitor (PAI-1) and oncogene mRNA [18]. Thus under some

circumstances receptor-specific signalling can occur, growth

inhibition being transduced by TGF-β-IIR and matrix gene

regulation by TGF-β-IR.

For the present study we prepared anti-peptide antibodies

directed against the C-terminus (anti-TGF-β-IIR-CT) and N-

terminus (anti-TGF-β-IIR-NT) of TGF-β-IIR, peptide motifs

that are essentially missing from TGF-β-IR. These antibodies

were utilized to characterize further the enzymology of TGF-β-

IIR and to investigate further the endogenous receptor complexes

in a variety of cells. Moreover, the N-terminal (anti-TGF-β-IIR-

NT) antibody exhibited the unique property of blocking TGF-β

binding to TGF-β-IR without disrupting the binding of TGF-β

to TGF-β-IIR, thus identifying a putative interaction domain

and a strategic mechanism by which cellular responsiveness to

TGF-β can be altered.

EXPERIMENTAL

Cell cultures

Human MG-63 and TE-85 osteosarcoma cells and human WI-38

diploid fibroblasts were obtained from the American Type

Culture Collection and maintained as monolayers in exponential-

phase growth in RPMI 1640 media supplemented with 10% fetal

calf serum. Primary cultures of differentiated rabbit articular

chondrocytes and secondary cultures of retinoic acid (RA)-

modulated rabbit chondrocytes were prepared as described

previously [19]. RA-modulated chondrocytes no longer express

the differentiated chondrocyte phenotype characterized by type-

II collagen synthesis, but re-express this phenotype in response to

TGF-β1 under serum-free conditions.

Reagents

TGF-β1 and "#&I-TGF-β1 (152 µCi}µg) were obtained from

R & D Systems (Minneapolis, MN, U.S.A.) and DuPont–NEN

(Boston, MA, U.S.A.) respectively. Digitonin was purchased

from Sigma (St. Louis, MO, U.S.A.), dissolved at 10 mg}ml in

water, heated at 55 °C for 30 min, cooled on ice for 2 h, and

centrifuged at 10000 g at 4 °C for 5 min before use of the clarified

supernatant at an assumed concentration of 10 mg}ml.

TGF-β-IIR-specific antibodies

Two different rabbit polyclonal antibodies selective for TGF-β-

IIR were utilized in these studies. The anti-TGF-β-IIR-NT

antibody is directed against a 28-residue synthetic peptide

(IPPHVQKSVNNDMIVTDNNGAVKFPQLC) corresponding

to amino acids 24–51 contained within the N-terminal (extra-

cellular) domain of mature (proteolytically processed) TGF-β-

IIR [12]. The anti-TGF-β-IIR-CT antibody is directed against a

16-residue synthetic peptide (CSEEKIPEDGSLNTTK) corre-

sponding to sequences 550–565 of the deduced primary structure

[12]. The synthetic peptides were coupled to activated keyhole

limpethaemocyanin via terminal cysteine residues before immuni-

zation and production of anti-peptide antibodies in rabbits. IgG

fractions of high-titre sera (ELISA) were prepared by Protein A

chromatography; affinity-purified antibodies were prepared by

column chromatography, utilizing the immunizing peptide

coupled to Affigel-10 (Bio-Rad) as an affinity matrix.

Metabolic labelling and immunochemical methods

For $&S protein labelling, cultured TE-85 and MG-63 osteo-

sarcoma cells were washed twice with prewarmed labelling

medium [methionine-free cysteine-free Dulbecco’s modified

Eagle’s medium (DMEM); ICN]. After a 30 min incubation in

the labelling medium, [$&S]Met}Cys (Tran $&S-label ; ICN) was

added to the medium (C 200 µCi}ml) and incubation was

continued for 4 h before cell lysis [20], immunoprecipitation,

SDS}PAGE, impregnation of the gel with autoradiographic

enhancers (Amersham) for 30 min and analysis by auto-

radiography at ®70 °C. Western-blot analysis of detergent

lysates, specific immunoprecipitations and in �itro kinase assays

were performed essentially as described previously [20].

Affinity cross-linking of 125I-TGF-β

Affinity cross-linking of "#&I-TGF-β to TGF-β receptors with

disuccinimidyl suberate (DSS; Pierce) was performed as de-

scribed [21], with the modification that cytosol was extracted by

digitonin permeabilization before membrane solubilization.

Briefly, confluent cultures of TE-85 cells, differentiated chon-

drocytes andRA-modulated chondrocyteswerewashed in unsup-

plemented DMEM for 30–60 min at 37 °C to decrease en-

dogenous TGF-β, and then briefly washed at 4 °C with binding

buffer 2 (BB2: DMEM, high glucose, 25 mM Hepes, pH 7.5,

without bicarbonate, osmolality adjusted with NaCl}0.2% BSA)

before a 3 h incubation at 4 °C with 40 pM "#&I-TGF-β in BB2.

Specificity of binding was demonstrated by a 3 h preincubation

with a 100-fold excess of unlabelled TGF-β. Cells were washed

twice with binding buffer 1 (BB1: 128 mM NaCl, 5 mM KCl,

5 mM MgSO
%
, 1.2 mM CaCl

#
, 50 mM Hepes, pH 7.5, 0.2%

BSA) and twice with BB1 (®BSA) before cross-linking with

0.27 mM DSS in BB1 (®BSA) for 15 min at 4 °C. Cross-linking

was quenched by washing twice for 5 min with ethanolamine in

CSK buffer (10 mM Hepes, pH 6.8, 3 mM MgCl
#
, 150 mM NaCl

and 1 mM EGTA). Cells were permeabilized and extracted twice

for 5 min each with CSK buffer containing 200 µg}ml digitonin

and the following protease inhibitor mixture (10 µg}ml leupeptin,

50 µg}ml aprotinin, 100 µg}ml soyabean trypsin inhibitor,

100 µg}ml benzamidine hydrochloride and 300 µM PMSF).

Dishes were washed and cell fragments collected by scraping into

CSK buffer containing protease inhibitors. After centrifugation

at 1310 g for 2 min, membrane proteins and TGF-β receptors
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were solubilized from the pellets by extraction for 20 min at 4 °C
with 200 µl of 0.5% Triton X-100 in CSK buffer containing

protease inhibitors. Extracts were microfuged at 16000 g for

10 min and the supernatants were used for immunoprecipitation

or analysed directly by adjustment to 1% SDS, 5% 2-

mercaptoethanol, 10% glycerol, boiling for 5 min and SDS}
PAGE on 7% gels.

Immunoblocking and precipitation of affinity-labelled receptors

In �itro tests for binding of anti-TGF-β-IIR-NT antibody were

performed by preincubating cultured cells in BB2 containing

40 µl of anti-TGF-β-IIR-NT serum for 3 h at 4 °C before

addition of "#&I-TGF-β and affinity cross-linking. Identification

of TGF-β-IR by sensitivity to reduction [13,22] was performed

by dissolving 50 mM dithiothreitol (DTT) in freshly degassed

BB1, diluting to 1 mM in degassed BB1 previously equilibrated

to 37 °C, and preincubating cultures in this solution for 5 min at

37 °C before washing at 4 °C with BB2 and incubation with "#&I-

TGF-β. For immunoprecipitation, Protein A–Sepharose beads

were washed in 0.1 M borate, pH 8.2, preloaded with CT,

NT, or non-immune serum for 30 min at room temperature

(100 µl}200 µl of beads in 500 µl of borate buffer) and washed

free of antibody in borate buffer. Loaded Protein A–Sepharose

beads were then washed and held for 1 h in 1% polyvinyl

pyrrolidone 40}0.1% Tween 20 in Tris-buffered saline, held for

30 min in CSK buffer containing 0.5% Triton X-100, and

pelleted before addition of Triton extracts. Each extract (200 µl)

was immunoprecipitated by rotation for 18 h at 4 °C with 30 µl

of packed preloaded beads. Supernatants containing unbound

material were adjusted to SDS}PAGE conditions (as above) and

denatured. Immunoprecipitates were washed three times with

CSK buffer containing 0.15% Triton X-100 and protease inhi-

bitors, suspended in 200 µl of SDS sample buffer, and boiled for

2 min before SDS}PAGE (7% gels).

Assay of casein kinase activity

The casein kinase activity of anti-TGF-β-IIR-NT and -CT

antibody immunoprecipitates from protein lysates of TE-85 cells

at 80% confluence was assayed as described previously [20,23]

using dephosphocasein (100 µg}ml) as the substrate.

Measurement of TGF-β activity by PAI-1-promoter-activated
luciferase

Mink lung epithelial cells stably transfected with an expression

construct containing a truncated PAI-1 promoter fused to firefly

luciferase as a reporter gene respond to the presence of TGF-β1

at pg}ml concentrations by increasing the activity of luciferase in

a dose-dependent manner [24]. These cells were plated at 1.6¬10%

cells per well of a 96-well plate and allowed to attach for 3 h in

the presence of 10% fetal bovine serum in DMEM. The serum-

containing medium was then removed and the cells washed with

DMEM. A series of standard TGF-β1 concentrations from 5 to

500 pg}ml diluted in DMEM were then added to the cells and

incubated for 20 h. The cells were then lysed and luciferase

activity in the lysates was measured using a kit obtained from

Analytical Luminescence Laboratories, Ann Arbor, MI, U.S.A.

using a scintillation spectrometer equipped with a single-photon

monitor.

Measurement of [3H]thymidine uptake into DNA in cultured cells

Mink lung epithelial cells were plated in 24-well plates at

1¬10&–2¬10& cells per well and grown in DMEM in the presence

of [$H]thymidine (1 µCi}well) for 6–8 h. The unincorporated

thymidine was removed with two washes of PBS. The cells were

then washed three times in ice-cold 5% trichloroacetic acid and

lysed with 1 M NaOH. Radioactivity in the cell lysates was

measured after neutralization with 1 M acetic acid using a

scintillation spectrometer.

RESULTS

Characterization and application of anti-TGF-β-IIR antibodies

Initial characterization of the affinity-purified antisera by West-

ern blotting of detergent lysates obtained from human osteo-

sarcoma cells, Ewing’s sarcoma cells and normal diploid fibro-

blasts (Figure 1) revealed multiple forms of TGF-β-IIR (about

75–80 kDa), which differed slightly in electrophoretic mobility.

As shown in Figure 1(C), cross-reactivity with the rabbit type-II

receptor(s) was observed with both the N-terminal (anti-TGF-β-

IIR-NT)- and C-terminal (anti-TGF-β-IIR-CT)-specific anti-

bodies. The detection of multiple receptor bands in both species

and by antibodies recognizing two distinct domains suggests that

multiple forms of the type-II receptor are present [22]. Immuno-

reactivity toward native receptors was demonstrated for both the

TGF-β-IIR-NT and TGF-β-IIR-CT antibodies by immuno-

precipitation of detergent lysates from TE-85 osteosarcoma cells

metabolically labelled with [$&S]methionine. A prominent band

of the expected size for the type-II receptor was detected by

fluorography following SDS}PAGE (Figure 2A). Analysis of the

anti-TGF-β-IIR-NT immune complexes by protein staining

enabled the visualization of a C 75 kDa protein that was

specifically precipitated by the primary antibodies (Figure 2B)

and was subsequently confirmed by Western blotting to represent

the type-II receptor. In addition to p75 TGF-β-IIR, two other

proteins of C 110 kDa and C 250 kDa were co-precipitated with

the type-II receptor (see Figure 2B), which may represent the

Figure 1 Western blotting of human (A and B) and rodent (C) TGF-β-IIR
(TBR II) with affinity-purified anti-TGF-β-IIR antibodies directed against the
N-terminal extracellular domain (αTBR II-NT) (A) or the C-terminal
cytoplasmic tail (αTBR II-CT) (B) of the mature (proteolytically processed)
receptor respectively in detergent lysates of human fibroblastic (WI-38),
osteoblastic (MG-63 and TE-85) or primitive neuroectodermal (EW-1) cell
derivatives

The gel in (C) demonstrates cross-reactivity of both antibodies with rodent (rabbit) TGF-β-IIR

(TBR II). Note that several electrophoretic isoforms of the receptor are revealed by these

antibodies.
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Figure 2 Immunoprecipitation of native TGF-β-IIR by anti-TGF-β-IIR-NT
(αTBR II-NT) and anti-TGF-β-IIR-CT (αTBR II-CT) antibodies

(A) Both the αTBR II-CT and αTBR II-NT antibodies specifically immunoprecipitate the 75 kDa

TGF-β-IIR from [35S]methionine-labelled cell lysates. (B) Coomassie-Blue-stained immuno-

precipitates from lysates of TE-85 cells demonstrating the specific appearance of TGF-β-IIR and

two associated proteins, p100 and p250. (C) Western blot of the immunoprecipitate from (B)

confirming the identity of TGF-β-IIR (TBR II) ; the high background that partially obscures the

immunoreactive band in this blot is due to reactivity with the original immunoprecipitating IgGs.

Ptn A Control, Protein A control ; Ab Control, a preabsorbed antibody control.

core protein and the modified (betaglycan) form of the type-III

receptor.

Detection of receptor autophosphorylation and intrinsic casein
kinase activity

Immunoprecipitation experiments followed by in �itro kinase

assays demonstrated low but appreciable levels of receptor

autophosphorylation, as determined by SDS}PAGE and auto-

radiography (Figure 3A). The kinase activity associated with the

immunoprecipitated type-II receptor was capable of utilizing

casein as a substrate and was found to be stimulated by polylysine

(Figure 3B). The polylysine-stimulated casein kinase activity was

specifically precipitated by both anti-TGF-β-IIR-CT and anti-

TGF-β-IIR-NT antibodies, further demonstrating that the obser-

ved kinase activity was intrinsic to and}or associated with TGF-

β-IIR. TGF-β-dependent stimulation of casein kinase activity in

�itro was not observed in either anti-TGF-β-IIR-CT or anti-

TGF-β-IIR-NT immune complexes under these conditions. As

shown in Figure 3(C), the intrinsic casein kinase activity asso-

ciated with the precipitated type-II receptor was not inhibited by

heparin at concentrations (50 µg}ml) that effectively abolished

cellular casein kinase II activity, as assayed in control reactions.

Moreover, the polylysine-stimulated activity was not inhibited

by heparin, as has been reported for the TGF-β type-V receptor

[25,26].

Characterization of endogenous receptor complexes by affinity
cross-linking and immunoprecipitation

A demonstration that the TGF-β-IIR-CT antibodies bind to

native TGF-β-IIR was provided by immunoprecipitation of "#&I-

TGF-β affinity-cross-linked receptors (Figure 4). In this study,

differentiated rabbit chondrocytes in primary culture were label-

led at 4 °C for 3 h with 40 pM "#&I-TGF-β, cross-linked with

Figure 3 Autophosphorylation and phosphotransferase activity of immuno-
precipitated TGF-β-IIR

(A) Immunoprecipitates with TGF-β-IIR-CT antibody demonstrate a 75 kDa TGF-β-IIR (TBR II)

autophosphorylated band, autophosphorylation of which is somewhat enhanced by the presence

of polylysine (50 µg/ml). (B) Phosphotransferase activity detected with dephosphocasein

(50 µg/ml) as substrate : immunoprecipitates using both TGF-β-IIR-CT and TGF-β-IIR-NT

antibodies were exposed to kinase assay conditions in the presence of polylysine (50 µg/ml)

and/or TGF-β1 (20 µg/ml) and detected by SDS/PAGE and autoradiography. Phospho-

transferase activity toward casein was markedly enhanced in the presence of polylysine. (C)

Casein kinase assays as in (B) conducted in the presence of heparin (50 µg/ml) as a classical

casein kinase II inhibitor. Heparin did not inhibit either basal or polylysine-stimulated casein

kinase activity.

0.27 mM DSS, quenched with ethanolamine, permeabilized with

digitonin-containing protease inhibitors, scraped off, and the

membrane fraction solubilized with 0.5% Triton X-100 for

30 min before SDS}PAGE on 7% gels. Direct analysis of the

Triton lysates demonstrates the presence of the three major

receptors, type I, II, III}betaglycan with appropriate mobility

(Figure 4A, lane 2). Specificity of labelling is demonstrated by

the absence of labelled bands from control samples pretreated

for 3 h at 4 °C with a 100-fold excess of unlabelled TGF-β

(Figure 4A, lane 1). Immunoprecipitation for 18 h at 4 °C with

the cytoplasmic domain TGF-β-IIR-CT antibody prebound to

Protein A–Sepharose resulted in essentially complete recovery of

receptors I and II in the bound fraction and depletion from the

free (unbound) fraction (Figure 4A, lanes 4 and 3 respectively).

Specificity of the labelling and the immunoprecipitation was

further demonstrated by the absence of bands in immuno-

precipitates from cells pretreated with unlabelled TGF-β (Figure

4A, lane 5). In contrast with these results with TGF-β-IIR-CT,

immunoprecipitations of rabbit chondrocytes with the extra-

cellular domain TGF-β-IIR-NT antibody, did not contain

affinity-labelled receptors, as the cross-linked receptors remained
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Figure 4 Immunoprecipitation of 125I-TGF-β-affinity-cross-linked receptors from differentiated (RA-modulated) rabbit chondrocytes (A) and human
osteosarcoma cells, TE-85 (B)

Confluent cells were pretreated with a 100-fold excess of unlabelled TGF-β1 (control) or incubated directly with 40 pM 125I-TGF-β1 for 3 h at 4 °C before affinity-cross-linking with 0.27 mM DSS.

Quenched, washed and digitonin-permeabilized cells were scraped off, and receptors were solubilized in the presence of protease inhibitors with 0.5% CSK buffer (lysate), before immunoprecipitation

with Protein A–Sepharose beads preloaded with the C-terminal TGF-β-IIR-CT antibody or the N-terminal TGF-βIIR-NT antibody. Equal fractions of unbound material (IP Free) and bound material

(IP Bound) were fractionated by SDS/PAGE (7% gels) and submitted to autoradiography for 6 days.

in the free fraction (lane 6). This was the same result as obtained

with immunoprecipitation using non-immune antisera (not

shown), and demonstrates that no affinity-labelled receptor is

non-specifically bound during these immunoprecipitations. The

lack of immunoprecipitation of affinity-labelled receptors by the

TGF-β-IIR-NT antibody is due to either (1) a decreased spectrum

of epitopes in the rabbit receptor resulting from differences in the

primary sequence or (2) decreased epitope reactivity in general

caused by amino group modification during cross-linking with

DSS.

We have further clarified these findings by affinity labelling

TGF-β receptors in the human osteosarcoma cell line HOS, TE-

85 (Figure 4B). The results are comparable with those for rabbit

chondrocytes with the exception that TGF-β-IIR-NT was

capable of partial immunoprecipitation of TGF-β-IR and -IIR

species from human osteosarcoma cells (Figure 4B, lanes 5 and

6). Whereas TGF-β-IIR-CT antibody efficiently precipitates

native TGF-β-IIR and its associated proteins from both human

and rabbit cells (compare Figures 4A and 4B), the TGF-β-IIR-

NT antibody appears to immunoprecipitate only the human

cross-linked receptors. Thus some uncross-linked epitopes appear

to be present in the human TGF-β-IIR that are missing from

the rabbit TGF-β-IIR. Immunoprecipitation of TGF-β-IR and

-IIIR with antibodies raised against two distinct domains of

TGF-β-IIR requires their direct or indirect physical association

with the type-II receptor. These interactions must be strong

enough to resist dissociation with 0.5% Triton X-100. The

immunoprecipitation of all three receptors by antibodies to

epitope-tagged expressed recombinant type-II receptor has pre-

viously been explained by the existence of separate binary

complexes of receptors I and II and III and II, with receptor II

being common to both. Although the present data are consistent

with the existence of a ternary complex, it does not provide

definitive support for this level of organization.

Inhibition of type-I receptor affinity labelling by preincubation of
cultured cells with anti-TGF-β-IIR-NT antibodies

We then used the N-terminal extracellular domain antibody,

anti-TGF-β-IIR-NT, to investigate further the ligand binding of

the type-II receptor and the nature of this receptor’s complexes

with the type-I and -III receptors. RA-modulated chondrocytes

were incubated for 3 h at 4 °C in the presence or absence of anti-

TGF-β-IIR-NT, and then "#&I-TGF-β was added for a further

3 h in preparation for affinity cross-linking as described above.

Autoradiographs of SDS}polyacrylamide gels revealing the

cross-linked receptors are presented in Figure 5. When added in

subsequent immunoprecipitations, anti-TGF-β-IIR-CT bound

the native type-II receptor in the absence of potential steric

hindrance by TGF-β ligand and in the absence of possible cross-

linking-dependent modification of antigenic determinants. Only

after equilibrium binding of TGF-β-IIR-NT were "#&I-TGF-β

and DSS introduced to the cells. Direct analysis of Triton lysates

demonstrated the presence of all three affinity-labelled receptors

(Figure 5, lane 2). When chondrocytes were pretreated with the

anti-TGF-β-IIR-NT antibody, lysate analysis showed a marked

reduction in the proportion of labelling of the type-I receptor,

and a consistent increase in the proportion of labelling of the

type-III receptor, in relation to the labelling of the type-II

receptor. These data indicate that binding of anti-TGF-β-IIR-

NT to the N-terminal domain of the type-II receptor does not

block the TGF-β-binding site of the receptor. Moreover, anti-

TGF-β-IIR-NT binding prevents subsequent binding of TGF-β

to the type-I receptor. Since TGF-β binding to the type-I receptor
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Figure 5 Blocking of TGF-β1 binding to the type-I receptor with the N-
terminal-specific antibody to the type-II receptor (NT)

RA-modulated chondrocytes were pretreated for 3 h at 4 °C with TGF-β-IIR-NT antibody (NT)

before affinity labelling with 125I-TGF-β and cross-linking. In some instances lysates were

immunoprecipitated with the C-terminal TGF-β-IIR-CT antibody. The identity of the type-I

receptor band was confirmed by its sensitivity to brief reduction with DTT before ligand

exposure. Pretreatment of cultured chondrocytes with anti-TGF-β-IIR-NT (extracellular domain)

antibodies before 125I-TGF-β exposure and cross-linking selectively blocked the ability of the

type-I receptor to bind TGF-β, increased labelling of the type-III receptor and slightly reduced

binding of radiolabelled TGF-β to the type-II receptor (lanes 3 and 7 versus lanes 2 and 5).

requires the receptor’s interaction with a ligand-bound type-II

receptor [16], the most likely explanation of the results is one of

the following: (i) that TGF-β-IIR-NT binding sterically blocks

the domain of the type-II receptor that is necessary for interaction

with the type-I receptor ; (ii) that TGF-β-IIR-NT binding distorts

the conformation of such an interaction domain; (iii) that TGF-

β-IIR-NT sterically blocks the type-I receptor from binding to

part of the type-II receptor-bound TGF-β ligand.

Immunoprecipitation of theTriton lysateswith the cytoplasmic

domain antibody, anti-TGF-β-IIR-CT, efficiently precipitated

receptors I and II (Figure 5, lane 5). When anti-TGF-β-IIR-NT

was bound before affinity labelling and immunoprecipitation

with anti-TGF-β-IIR-CT, immunoprecipitates showed essen-

tially the same changes as observed in the whole cell lysates

(Figure 5, lane 7). Interestingly, the increased binding to the

type-III receptor is detected in both the free (unbound) fraction

and the type-II receptor immune complexes. The simultaneous

increase in type-III receptor labelling along with the observed

decrease in type-I receptor labelling in the anti-TGF-β-IIR-CT

immunoprecipitates suggests that the type-III receptor may

present TGF-β ligand to the type-I}type-II receptor complexes

as well as to the type-II receptors. Thus blocking the ability of

receptor I to bind receptor II with TGF-β-IIR-NT may leave the

TGF-β destined for the type-I receptor associated with the type-

III–II complexes.

TGF-β-IIR-NT antibodies block TGF-β1 activation of PAI-1
promoter

TGF-β1 activated the PAI-1 promoter in mink lung epithelial

cells stably transfected with an expression construct containing a

truncated PAI-1 promoter fused to the firefly luciferase reporter

gene [24] at concentrations of TGF-β1 as low as 5 pg}ml (Figure

Figure 6 Blocking effects of TGF-β-IIR NT blocking antibodies (Ab) on PAI-
1 promoter–luciferase activation by TGF-β1 in mink lung epithelial cells

TGF-β-IIR-NT blocking antibodies completely inhibited PAI-1 promoter luciferase activation by

TGF-β1 in mink lung epithelial cells stably transfected with an expression construct containing

a truncated PAI-1 promoter fused to the firefly luciferase gene.

Figure 7 TGF-β-IIR-NT antibodies do not inhibit the negative effects of
TGF-β1 on thymidine incorporation into DNA by mink lung epithelial cells

Although the resulting dose–response curves are somewhat offset, TGF-β1 inhibited the

amount of thymidine incorporated into DNA in both the presence and absence of TGF-β-IIR-

NT antibodies.

6). Moreover, the activation curve was linear up to 500 pg}ml

TGF-β1 (not shown). Preincubation of the mink lung epithelial

cells in the presence of 20 µg}ml affinity-purified TGF-β-IIR-NT

antibodies for 1 h completely blocked activation of the PAI-1

promoter by TGF-β1 up to 40 pg}ml, whereas preincubation

with non-immune IgG had no effect on PAI-1 promoter ac-

tivation by TGF-β1.

TGF-β-IIR-NT antibodies do not block TGF-β1 inhibition of
thymidine incorporation into DNA

TGF-β1 inhibited the amount of thymidine incorporated into

DNA of mink lung epithelial cells by 75% at a concentration of

650 pg}ml (IC
&!

, 175 pg}ml). Preincubation of mink lung epi-

thelial cells in the presence of 20 µg}ml affinity-purified TGF-β-

IIR-NT antibodies for 1 h resulted in an appreciable shift of the

concentration–effect curve origin, reducing thymidine incor-

poration into DNA of mink lung epithelial cells by 25% (Figure
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7). However, the IC
&!

for TGF-β1 was 175 pg}ml in both the

presence and absence of TGF-β-IIR-NT antibodies, whereas

addition of TGF-β1 in the presence of anti-TGF-β-IIR-NT

blocking antibodies resulted in more than 95% reduction in

thymidine incorporation into DNA at 650 pg}ml. Preincubation

with non-immune IgG had no effect on thymidine incorporation

into DNA.

DISCUSSION

The cloning and expression of recombinant TGF-β receptors in

mammalian somatic cells has provided major advances in our

understanding of receptor interactions and signalling require-

ments, demonstrating co-operativity of TGF-β-IIIR–TGF-β-

IIR complexes [14,15,27–29], the requirement for TGF-β-IIR for

TGF-β-IR function [16,30–33] and the importance of intrinsic

kinase domains within the signalling receptors [34–36]. Inter-

pretations of receptor overexpression studies in physiological

systems, however, are tempered by the likelihood of consumption

of co-operating receptors, the titration of receptor-associated

proteins and}or the impairment of receptor transport to the cell

surface [37]. The present study demonstrates the formation of

hetero-oligomeric receptor complexes in normal as well as

neoplastic mesenchymal cells and provides additional insights

into the biochemistry of the TGF-β-IIR.

The multiple forms of the type-II receptor observed here may

reflect specific covalent modifications, proteolytic processing

and}or expression of closely related isoforms that merit further

characterization. The identification of TGF-β-IIR intrinsic casein

kinase activity and the demonstration that TGF-β-IIR-associated

casein kinase activity is stimulated by polyanions is interesting in

that these are among the biochemical properties ascribed to the

newly identified TGF-β type-V receptor [25,26]. However, in

contrast with the type-V receptor, no stimulation of either TGF-

β-IIR autophosphorylation or casein phosphorylation in the

presence of added TGF-β was observed under our assay condi-

tions. Nevertheless, the activation of TGF-β-IIR-associated

casein kinase activity, as well as the identification of an exogenous

substrate, should facilitate the biochemical characterization of

this important signalling receptor}kinase.

TGF-β-mediated transcriptional and antiproliferative re-

sponses are mediated through heteromeric signalling complexes

comprised of two TGF-β type-1 and -II receptors in each

signalling complex of four interacting receptors [38,39]. TGF-β1

and β2 ligands bind to these receptors in different ways:

TGF-β1 binds directly to TGF-β-IIR, whereas TGF-β2

binds co-operatively to TGF-β-IIR, having first bound either

TGF-β-IR or -IIIR [33]. Transphosphorylation of TGF-β-IR by

the TGF-β-IIR serine}threonine kinase results in TGF-β-IR

activation which activates signalling [36]. Phosphorylation of

serines in the GS domain of TGF-βIR is particularly important

in this signalling mechanism [40] ; a point proline-525 to leucine

mutation in the TGF-β-IIR kinase subdomain results in a

receptor that binds TGF-β ligand normally, but fails to recruit

and activate TGF-β-IR in the signalling complex. Differential

activation of transcriptional and growth-inhibitory responses to

TGF-β ligands may then be specified by which TGF-β-IR is

present in the signalling complex, such as the R4 subtype

[41–44].

On the other hand, in cells expressing truncated kinase-deficient

dominant negative TGF-β-IIR mutants, two separate TGF-β

signalling pathways have been identified [18]. In the second

system, TGF-β-IIR, possibly in conjunction with TGF-β-IR,

mediates growth inhibition and hypophosphorylation of the

retinoblastoma gene product, whereas TGF-β-IR is responsible

for effects on extracellular matrix, such as the induction of the

PAI-1 and fibronectin genes [18]. The results reported here

support the latter concept: an anti-TGF-β-IIR-NT antibody

differentially blocked PAI-1 promoter activation but not the

negative regulation of thymidine incorporation in response to

TGF-β1 peptide ligand signalling. Moreover, radioligand-bind-

ing studies in the presence of this antibody specifically displaced

ligand from TGF-β-IR but not from TGFβ-IIR or -IIIR.

However, further studies will be needed to determine definitively

the effects of the TGF-β-IIR-NT antibody on the assembly of

TGF-β signalling complexes.

Using double-receptor mutants of the Mv1Lu mink lung

epithelial cell line, which exhibit no binding to either TGF-β-IR

or TGF-β-IIR, Wrana et al. [16] demonstrated the rescue

of endogenous TGF-β-IR binding by expression of epitope-

tagged TGF-β-IIR. In addition, mutant cells expressing

epitope-tagged TGF-β-IIR were capable of TGF-β-dependent

growth inhibition, matrix synthesis and gene expression, whereas

those expressing a kinase-defective construct of TGF-β-IIR were

unable to do so, even though ligand binding was demonstrably

restored to the endogenous TGF-β-IR. Thus in this cell system,

interaction with functional TGF-β-IIR is required for TGF-β

binding to TGF-β-IR, and signalling for all tested effects required

the intrinsic kinase activity of TGF-β-IIR. In contrast with these

results are those derived from stable transfection of Mv1Lu cells

with a dominant negative TGF-β-IIR mutant lacking the cyto-

plasmic kinase domain which results in the down-regulation or

elimination of endogenous TGF-β-IIR kinase activity without

alteration of ligand binding to TGF-β-IR. Under these

conditions, there is a nearly complete loss of the characteristic

growth inhibition. However, TGF-β-dependent stimulation of

fibronectin, PAI-1 and oncogene expression were not attenuated

[18]. Thus, under some circumstances, receptor-complex-specific

signalling occurs, with growth inhibition attributable primarily

to TGF-β-IIR and matrix synthesis}gene expression associated

with TGF-β-IR.

In the light of our present findings this latter concept is

particularly germane. For, in addition to demonstrating that

endogenous TGF-β-IIR associates in stable complexes with both

TGF-β-IR and TGF-β-IIIR, the antibody directed against a

particular extracellular segment of TGF-β-IIR effectively disrup-

ted the physical association of TGF-β-IIR with TGF-β-IR

without disrupting the ability of TGF-β to bind to (and pre-

sumably activate) the type-II receptor. This property of the

antibody provides additional support for the emerging concept

that molecular signalling through TGF-β-IR requires physical

interaction with TGF-β-IIR [14,16]. Moreover, the ability of this

particular antibody [strategically designed to recognize an epi-

tope(s) remote from the TGF-β-IIR ligand-binding domain] to

selectively block TGF-β binding to and activation of TGF-β-IR,

without blocking TGF-β-IIR itself, provides a powerful phar-

macological approach to the investigation of mechanisms of

receptor–receptor interaction and the exploration of the dif-

ferential signal-transduction pathways emanating from the dif-

ferent ‘signalling’ receptor complexes. The present study demon-

strates the potential utility of anti-TGF-β-IIR-NT antibodies as

a pharmacological tool for modulating specific TGF-β–receptor

complexes and as a potential method of altering cellular re-

sponses. The molecular mechanism of action of these antibodies

is currently unknown (steric hindrance or identification of a

specific binding domain, for example). Future studies will address

these questions and will further address the usefulness of strategic

immunochemicals in modulating the TGF-β–receptor complexes

that mediate cellular signalling responses.
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