Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 15;316(Pt 1):325–329. doi: 10.1042/bj3160325

Function and membrane topology of wild-type and mutated cytochrome P-450c21.

M C Hu 1, L C Hsu 1, N C Hsu 1, B C Chung 1
PMCID: PMC1217342  PMID: 8645225

Abstract

We have studied membrane topology of cytochrome P-450c21 (P450c21) using the approaches of mutagenesis and protease digestion. P450c21 is located at the cytoplasm with an N-terminal hydrophobic domain integrated into microsomal membranes. When this hydrophobic domain was replaced by a secretory signal peptide, P450c21 was translocated into the lumen and lost enzymic activity. No other topogenic sequence was detected in the bulk of the P450c21 peptide. A mutant protein with Pro-30 replaced by Leu (L30) corresponding to the mutation found in the diseased state was created. L30 protein lost 90% of enzymic activity, while a double mutant (L30R32) with an additional Leu-32 to Arg mutation had slightly higher residual enzymic activity. Apart from lower activity, L30 was also present in the cell at a lower level than wild-type P450c21. This lower level is probably due to increased degradation, as L30 is synthesized at a normal rate. Both L30 and L30R32 proteins, however, were integrated into membranes normally. Therefore the Pro-30 --> Leu mutation did not affect membrane integration, but affected the abundance and enzymic activity of P450c21.

Full Text

The Full Text of this article is available as a PDF (365.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amor M., Parker K. L., Globerman H., New M. I., White P. C. Mutation in the CYP21B gene (Ile-172----Asn) causes steroid 21-hydroxylase deficiency. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1600–1604. doi: 10.1073/pnas.85.5.1600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bernhardt R., Makower A., Jänig G. R., Ruckpaul K. Selective chemical modification of a functionally linked lysine in cytochrome P-450 LM2. Biochim Biophys Acta. 1984 Mar 29;785(3):186–190. doi: 10.1016/0167-4838(84)90143-2. [DOI] [PubMed] [Google Scholar]
  3. Brown C. A., Black S. D. Membrane topology of mammalian cytochromes P-450 from liver endoplasmic reticulum. Determination by trypsinolysis of phenobarbital-treated microsomes. J Biol Chem. 1989 Mar 15;264(8):4442–4449. [PubMed] [Google Scholar]
  4. Chiou S. H., Hu M. C., Chung B. C. A missense mutation at Ile172----Asn or Arg356----Trp causes steroid 21-hydroxylase deficiency. J Biol Chem. 1990 Feb 25;265(6):3549–3552. [PubMed] [Google Scholar]
  5. Chung B. C., Hu M. C., Guzov V. M., Wu D. A. Structure and expression of the CYP21 (P450c21, steroid 21-hydroxylase) gene with respect to its deficiency. Endocr Res. 1995 Feb-May;21(1-2):343–352. doi: 10.3109/07435809509030450. [DOI] [PubMed] [Google Scholar]
  6. Churchill P. F., Kimura T. Topological studies of cytochromes P-450scc and P-45011 beta in bovine adrenocortical inner mitochondrial membranes. Effects of controlled tryptic digestion. J Biol Chem. 1979 Oct 25;254(20):10443–10448. [PubMed] [Google Scholar]
  7. Cooper M. B., Craft J. A., Estall M. R., Rabin B. R. Asymmetric distribution of cytochrome P-450 and NADPH--cytochrome P-450 (cytochrome c) reductase in vesicles from smooth endoplasmic reticulum of rat liver. Biochem J. 1980 Sep 15;190(3):737–746. doi: 10.1042/bj1900737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Lemos-Chiarandini C., Frey A. B., Sabatini D. D., Kreibich G. Determination of the membrane topology of the phenobarbital-inducible rat liver cytochrome P-450 isoenzyme PB-4 using site-specific antibodies. J Cell Biol. 1987 Feb;104(2):209–219. doi: 10.1083/jcb.104.2.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Edwards R. J., Murray B. P., Boobis A. R., Davies D. S. Identification and location of alpha-helices in mammalian cytochromes P450. Biochemistry. 1989 May 2;28(9):3762–3770. doi: 10.1021/bi00435a021. [DOI] [PubMed] [Google Scholar]
  10. Hasemann C. A., Ravichandran K. G., Peterson J. A., Deisenhofer J. Crystal structure and refinement of cytochrome P450terp at 2.3 A resolution. J Mol Biol. 1994 Mar 4;236(4):1169–1185. doi: 10.1016/0022-2836(94)90019-1. [DOI] [PubMed] [Google Scholar]
  11. Helmberg A., Tusie-Luna M. T., Tabarelli M., Kofler R., White P. C. R339H and P453S: CYP21 mutations associated with nonclassic steroid 21-hydroxylase deficiency that are not apparent gene conversions. Mol Endocrinol. 1992 Aug;6(8):1318–1322. doi: 10.1210/mend.6.8.1406709. [DOI] [PubMed] [Google Scholar]
  12. Higashi Y., Yoshioka H., Yamane M., Gotoh O., Fujii-Kuriyama Y. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci U S A. 1986 May;83(9):2841–2845. doi: 10.1073/pnas.83.9.2841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  14. Hsu L. C., Hsu N. C., Guzova J. A., Guzov V. M., Chang S. F., Chung B. C. The common I172N mutation causes conformational change of cytochrome P450c21 revealed by systematic mutation, kinetic, and structural studies. J Biol Chem. 1996 Feb 9;271(6):3306–3310. doi: 10.1074/jbc.271.6.3306. [DOI] [PubMed] [Google Scholar]
  15. Hsu L. C., Hu M. C., Cheng H. C., Lu J. C., Chung B. C. The N-terminal hydrophobic domain of P450c21 is required for membrane insertion and enzyme stability. J Biol Chem. 1993 Jul 15;268(20):14682–14686. [PubMed] [Google Scholar]
  16. Hu M. C., Chung B. C. Expression of human 21-hydroxylase (P450c21) in bacterial and mammalian cells: a system to characterize normal and mutant enzymes. Mol Endocrinol. 1990 Jun;4(6):893–898. doi: 10.1210/mend-4-6-893. [DOI] [PubMed] [Google Scholar]
  17. Jänig G. R., Kraft R., Blanck J., Ristau O., Rabe H., Ruckpaul K. Chemical modification of cytochrome P-450 LM4. Identification of functionally linked tyrosine residues. Biochim Biophys Acta. 1987 Dec 18;916(3):512–523. doi: 10.1016/0167-4838(87)90198-1. [DOI] [PubMed] [Google Scholar]
  18. Kagimoto M., Heim M., Kagimoto K., Zeugin T., Meyer U. A. Multiple mutations of the human cytochrome P450IID6 gene (CYP2D6) in poor metabolizers of debrisoquine. Study of the functional significance of individual mutations by expression of chimeric genes. J Biol Chem. 1990 Oct 5;265(28):17209–17214. [PubMed] [Google Scholar]
  19. Miller W. L., Levine L. S. Molecular and clinical advances in congenital adrenal hyperplasia. J Pediatr. 1987 Jul;111(1):1–17. doi: 10.1016/s0022-3476(87)80334-7. [DOI] [PubMed] [Google Scholar]
  20. Miller W. L. Molecular biology of steroid hormone synthesis. Endocr Rev. 1988 Aug;9(3):295–318. doi: 10.1210/edrv-9-3-295. [DOI] [PubMed] [Google Scholar]
  21. Miller W. L., Morel Y. The molecular genetics of 21-hydroxylase deficiency. Annu Rev Genet. 1989;23:371–393. doi: 10.1146/annurev.ge.23.120189.002103. [DOI] [PubMed] [Google Scholar]
  22. Monier S., Van Luc P., Kreibich G., Sabatini D. D., Adesnik M. Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol. 1988 Aug;107(2):457–470. doi: 10.1083/jcb.107.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Morimoto T., Matsuura S., Sasaki S., Yashiro Y., Omura T. Immunochemical and immunoelectron microscope studies on localization of NADPH-cytochrome c reductase on rat liver microsomes. J Cell Biol. 1976 Feb;68(2):189–201. doi: 10.1083/jcb.68.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Murakami K., Mihara K., Omura T. The transmembrane region of microsomal cytochrome P450 identified as the endoplasmic reticulum retention signal. J Biochem. 1994 Jul;116(1):164–175. doi: 10.1093/oxfordjournals.jbchem.a124489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
  26. Nelson D. R., Strobel H. W. On the membrane topology of vertebrate cytochrome P-450 proteins. J Biol Chem. 1988 May 5;263(13):6038–6050. [PubMed] [Google Scholar]
  27. Nelson D. R., Strobel H. W. Secondary structure prediction of 52 membrane-bound cytochromes P450 shows a strong structural similarity to P450cam. Biochemistry. 1989 Jan 24;28(2):656–660. doi: 10.1021/bi00428a036. [DOI] [PubMed] [Google Scholar]
  28. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  29. Owerbach D., Crawford Y. M., Draznin M. B. Direct analysis of CYP21B genes in 21-hydroxylase deficiency using polymerase chain reaction amplification. Mol Endocrinol. 1990 Jan;4(1):125–131. doi: 10.1210/mend-4-1-125. [DOI] [PubMed] [Google Scholar]
  30. Owerbach D., Sherman L., Ballard A. L., Azziz R. Pro-453 to Ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol Endocrinol. 1992 Aug;6(8):1211–1215. doi: 10.1210/mend.6.8.1406699. [DOI] [PubMed] [Google Scholar]
  31. Pakula A. A., Sauer R. T. Genetic analysis of protein stability and function. Annu Rev Genet. 1989;23:289–310. doi: 10.1146/annurev.ge.23.120189.001445. [DOI] [PubMed] [Google Scholar]
  32. Pakula A. A., Young V. B., Sauer R. T. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8829–8833. doi: 10.1073/pnas.83.23.8829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Poulos T. L., Finzel B. C., Howard A. J. High-resolution crystal structure of cytochrome P450cam. J Mol Biol. 1987 Jun 5;195(3):687–700. doi: 10.1016/0022-2836(87)90190-2. [DOI] [PubMed] [Google Scholar]
  34. Ravichandran K. G., Boddupalli S. S., Hasermann C. A., Peterson J. A., Deisenhofer J. Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science. 1993 Aug 6;261(5122):731–736. doi: 10.1126/science.8342039. [DOI] [PubMed] [Google Scholar]
  35. Sakaguchi M., Mihara K., Sato R. A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J. 1987 Aug;6(8):2425–2431. doi: 10.1002/j.1460-2075.1987.tb02521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Speiser P. W., New M. I., White P. C. Molecular genetic analysis of nonclassic steroid 21-hydroxylase deficiency associated with HLA-B14,DR1. N Engl J Med. 1988 Jul 7;319(1):19–23. doi: 10.1056/NEJM198807073190104. [DOI] [PubMed] [Google Scholar]
  37. Szczesna-Skorupa E., Kemper B. An N-terminal glycosylation signal on cytochrome P450 is restricted to the endoplasmic reticulum in a luminal orientation. J Biol Chem. 1993 Jan 25;268(3):1757–1762. [PubMed] [Google Scholar]
  38. Szczesna-Skorupa E., Kemper B. NH2-terminal substitutions of basic amino acids induce translocation across the microsomal membrane and glycosylation of rabbit cytochrome P450IIC2. J Cell Biol. 1989 Apr;108(4):1237–1243. doi: 10.1083/jcb.108.4.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Szczesna-Skorupa E., Straub P., Kemper B. Deletion of a conserved tetrapeptide, PPGP, in P450 2C2 results in loss of enzymatic activity without a change in its cellular location. Arch Biochem Biophys. 1993 Jul;304(1):170–175. doi: 10.1006/abbi.1993.1335. [DOI] [PubMed] [Google Scholar]
  40. Tsokos D. C., Omata Y., Robinson R. C., Krutzsch H. C., Gelboin H. V., Friedman F. K. A proteolytically sensitive region common to several rat liver cytochromes P450: effect of cleavage on substrate binding. Biochemistry. 1992 Aug 11;31(31):7155–7159. doi: 10.1021/bi00146a018. [DOI] [PubMed] [Google Scholar]
  41. Tusie-Luna M. T., Speiser P. W., Dumic M., New M. I., White P. C. A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol Endocrinol. 1991 May;5(5):685–692. doi: 10.1210/mend-5-5-685. [DOI] [PubMed] [Google Scholar]
  42. Wedlock N., Asawa T., Baumann-Antczak A., Smith B. R., Furmaniak J. Autoimmune Addison's disease. Analysis of autoantibody binding sites on human steroid 21-hydroxylase. FEBS Lett. 1993 Oct 11;332(1-2):123–126. doi: 10.1016/0014-5793(93)80497-i. [DOI] [PubMed] [Google Scholar]
  43. White P. C., Grossberger D., Onufer B. J., Chaplin D. D., New M. I., Dupont B., Strominger J. L. Two genes encoding steroid 21-hydroxylase are located near the genes encoding the fourth component of complement in man. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1089–1093. doi: 10.1073/pnas.82.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wu D. A., Hu M. C., Chung B. C. Expression and functional study of wild-type and mutant human cytochrome P450c21 in Saccharomyces cerevisiae. DNA Cell Biol. 1991 Apr;10(3):201–209. doi: 10.1089/dna.1991.10.201. [DOI] [PubMed] [Google Scholar]
  45. Yamazaki S., Sato K., Suhara K., Sakaguchi M., Mihara K., Omura T. Importance of the proline-rich region following signal-anchor sequence in the formation of correct conformation of microsomal cytochrome P-450s. J Biochem. 1993 Nov;114(5):652–657. doi: 10.1093/oxfordjournals.jbchem.a124232. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES