Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 15;317(Pt 2):467–473. doi: 10.1042/bj3170467

Evidence that residues exposed on the three-fold channels have active roles in the mechanism of ferritin iron incorporation.

S Levi 1, P Santambrogio 1, B Corsi 1, A Cozzi 1, P Arosio 1
PMCID: PMC1217510  PMID: 8713073

Abstract

Iron is thought to enter the ferritin cavity via the three-fold channel, which is lined in its narrowest part by the residues Asp-131 and Glu-134. We describe here variants of human ferritins with active and inactive ferroxidase centres having Asp-131 and Glu-134 substituted with Ala and Ala or with Ile and Phe respectively. The two types of substitution had similar effects on ferritin functionality: (i) they decreased the amount of iron incorporated from Fe(II) solutions and decreased ferroxidase activity by about 50%; (ii) they inhibited iron incorporation from Fe(III) citrate in the presence of ascorbate; (iii) they resulted in loss of Fe and Tb binding sites; and (iv) they resulted in a marked decrease in the inhibition of iron oxidation by Tb (but not by Zn). In addition, it was found that substitution with Ala of Cys-130 and His-118, both of which face the three-fold channel, decreased the capacity of H-ferritin to bind terbium and to incorporate iron from Fe(III) citrate in the presence of ascorbate. The results indicate that: (i) in three-fold channels are the major sites of iron transfer into the cavity of H- and L-ferritins; (ii) at least two metal binding sites are located on the channels which play an active role in capturing and transferring iron into the cavity; and (iii) the permeability of the channel is apparently not affected by the hydrophilicity of its narrowest part. In addition, it is proposed that iron incorporation from Fe(III) citrate complexes in the presence of ascorbate is a reliable, and possibly more physiological, approach to the study of ferritin functionality.

Full Text

The Full Text of this article is available as a PDF (529.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews S. C., Arosio P., Bottke W., Briat J. F., von Darl M., Harrison P. M., Laulhère J. P., Levi S., Lobreaux S., Yewdall S. J. Structure, function, and evolution of ferritins. J Inorg Biochem. 1992 Aug 15;47(3-4):161–174. doi: 10.1016/0162-0134(92)84062-r. [DOI] [PubMed] [Google Scholar]
  2. Arosio P., Adelman T. G., Drysdale J. W. On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem. 1978 Jun 25;253(12):4451–4458. [PubMed] [Google Scholar]
  3. Bauminger E. R., Harrison P. M., Hechel D., Hodson N. W., Nowik I., Treffry A., Yewdall S. J. Iron (II) oxidation and early intermediates of iron-core formation in recombinant human H-chain ferritin. Biochem J. 1993 Dec 15;296(Pt 3):709–719. doi: 10.1042/bj2960709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bauminger E. R., Harrison P. M., Nowik I., Treffry A. Mössbauer spectroscopic study of the initial stages of iron-core formation in horse spleen apoferritin: evidence for both isolated Fe(III) atoms and oxo-bridged Fe(III) dimers as early intermediates. Biochemistry. 1989 Jun 27;28(13):5486–5493. doi: 10.1021/bi00439a025. [DOI] [PubMed] [Google Scholar]
  5. Bauminger E. R., Treffry A., Hudson A. J., Hechel D., Hodson N. W., Andrews S. C., Levi S., Nowik I., Arosio P., Guest J. R. Iron incorporation into ferritins: evidence for the transfer of monomeric Fe(III) between ferritin molecules and for the formation of an unusual mineral in the ferritin of Escherichia coli. Biochem J. 1994 Sep 15;302(Pt 3):813–820. doi: 10.1042/bj3020813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chasteen N. D., Theil E. C. Iron binding by horse spleen apoferritin. A vanadyl(IV) EPR spin probe study. J Biol Chem. 1982 Jul 10;257(13):7672–7677. [PubMed] [Google Scholar]
  7. Cheesman M. R., le Brun N. E., Kadir F. H., Thomson A. J., Moore G. R., Andrews S. C., Guest J. R., Harrison P. M., Smith J. M., Yewdall S. J. Haem and non-haem iron sites in Escherichia coli bacterioferritin: spectroscopic and model building studies. Biochem J. 1993 May 15;292(Pt 1):47–56. doi: 10.1042/bj2920047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen-Barrett Y., Harrison P. M., Treffry A., Quail M. A., Arosio P., Santambrogio P., Chasteen N. D. Tyrosyl radical formation during the oxidative deposition of iron in human apoferritin. Biochemistry. 1995 Jun 20;34(24):7847–7853. doi: 10.1021/bi00024a008. [DOI] [PubMed] [Google Scholar]
  9. Desideri A., Stefanini S., Polizio F., Petruzzelli R., Chiancone E. Iron entry route in horse spleen apoferritin. Involvement of the three-fold channels as probed by selective reaction of cysteine-126 with the spin label 4-maleimido-tempo. FEBS Lett. 1991 Aug 5;287(1-2):10–14. doi: 10.1016/0014-5793(91)80004-m. [DOI] [PubMed] [Google Scholar]
  10. Ford G. C., Harrison P. M., Rice D. W., Smith J. M., Treffry A., White J. L., Yariv J. Ferritin: design and formation of an iron-storage molecule. Philos Trans R Soc Lond B Biol Sci. 1984 Feb 13;304(1121):551–565. doi: 10.1098/rstb.1984.0046. [DOI] [PubMed] [Google Scholar]
  11. Hanna P. M., Chasteen N. D., Rottman G. A., Aisen P. Iron binding to horse spleen apoferritin: a vanadyl ENDOR spin probe study. Biochemistry. 1991 Sep 24;30(38):9210–9216. doi: 10.1021/bi00102a012. [DOI] [PubMed] [Google Scholar]
  12. Harris D. C., Aisen P. Facilitation of Fe(II) autoxidation by Fe(3) complexing agents. Biochim Biophys Acta. 1973 Nov 2;329(1):156–158. doi: 10.1016/0304-4165(73)90019-6. [DOI] [PubMed] [Google Scholar]
  13. Jacobs D., Watt G. D., Frankel R. B., Papaefthymiou G. C. Fe2+ binding to apo and holo mammalian ferritin. Biochemistry. 1989 Nov 14;28(23):9216–9221. doi: 10.1021/bi00449a038. [DOI] [PubMed] [Google Scholar]
  14. Laulhere J. P., Briat J. F. Iron release and uptake by plant ferritin: effects of pH, reduction and chelation. Biochem J. 1993 Mar 15;290(Pt 3):693–699. doi: 10.1042/bj2900693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lawson D. M., Artymiuk P. J., Yewdall S. J., Smith J. M., Livingstone J. C., Treffry A., Luzzago A., Levi S., Arosio P., Cesareni G. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature. 1991 Feb 7;349(6309):541–544. doi: 10.1038/349541a0. [DOI] [PubMed] [Google Scholar]
  16. Lawson D. M., Treffry A., Artymiuk P. J., Harrison P. M., Yewdall S. J., Luzzago A., Cesareni G., Levi S., Arosio P. Identification of the ferroxidase centre in ferritin. FEBS Lett. 1989 Aug 28;254(1-2):207–210. doi: 10.1016/0014-5793(89)81040-3. [DOI] [PubMed] [Google Scholar]
  17. Lee M., Arosio P., Cozzi A., Chasteen N. D. Identification of the EPR-active iron-nitrosyl complexes in mammalian ferritins. Biochemistry. 1994 Mar 29;33(12):3679–3687. doi: 10.1021/bi00178a026. [DOI] [PubMed] [Google Scholar]
  18. Levi S., Luzzago A., Cesareni G., Cozzi A., Franceschinelli F., Albertini A., Arosio P. Mechanism of ferritin iron uptake: activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J Biol Chem. 1988 Dec 5;263(34):18086–18092. [PubMed] [Google Scholar]
  19. Levi S., Luzzago A., Franceschinelli F., Santambrogio P., Cesareni G., Arosio P. Mutational analysis of the channel and loop sequences of human ferritin H-chain. Biochem J. 1989 Dec 1;264(2):381–388. doi: 10.1042/bj2640381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levi S., Santambrogio P., Cozzi A., Rovida E., Corsi B., Tamborini E., Spada S., Albertini A., Arosio P. The role of the L-chain in ferritin iron incorporation. Studies of homo and heteropolymers. J Mol Biol. 1994 May 20;238(5):649–654. doi: 10.1006/jmbi.1994.1325. [DOI] [PubMed] [Google Scholar]
  21. Levi S., Yewdall S. J., Harrison P. M., Santambrogio P., Cozzi A., Rovida E., Albertini A., Arosio P. Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem J. 1992 Dec 1;288(Pt 2):591–596. doi: 10.1042/bj2880591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pead S., Durrant E., Webb B., Larsen C., Heaton D., Johnson J., Watt G. D. Metal ion binding to apo, holo, and reconstituted horse spleen ferritin. J Inorg Biochem. 1995 Jul;59(1):15–27. doi: 10.1016/0162-0134(94)00050-k. [DOI] [PubMed] [Google Scholar]
  23. Précigoux G., Yariv J., Gallois B., Dautant A., Courseille C., d'Estaintot B. L. A crystallographic study of haem binding to ferritin. Acta Crystallogr D Biol Crystallogr. 1994 Sep 1;50(Pt 5):739–743. doi: 10.1107/S0907444994003227. [DOI] [PubMed] [Google Scholar]
  24. Santambrogio P., Levi S., Cozzi A., Corsi B., Arosio P. Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem J. 1996 Feb 15;314(Pt 1):139–144. doi: 10.1042/bj3140139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Santambrogio P., Levi S., Cozzi A., Rovida E., Albertini A., Arosio P. Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J Biol Chem. 1993 Jun 15;268(17):12744–12748. [PubMed] [Google Scholar]
  26. Stefanini S., Desideri A., Vecchini P., Drakenberg T., Chiancone E. Identification of the iron entry channels in apoferritin. Chemical modification and spectroscopic studies. Biochemistry. 1989 Jan 10;28(1):378–382. doi: 10.1021/bi00427a052. [DOI] [PubMed] [Google Scholar]
  27. Sun S., Arosio P., Levi S., Chasteen N. D. Ferroxidase kinetics of human liver apoferritin, recombinant H-chain apoferritin, and site-directed mutants. Biochemistry. 1993 Sep 14;32(36):9362–9369. doi: 10.1021/bi00087a015. [DOI] [PubMed] [Google Scholar]
  28. Sun S., Chasteen N. D. Ferroxidase kinetics of horse spleen apoferritin. J Biol Chem. 1992 Dec 15;267(35):25160–25166. [PubMed] [Google Scholar]
  29. Theil E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi: 10.1146/annurev.bi.56.070187.001445. [DOI] [PubMed] [Google Scholar]
  30. Treffry A., Bauminger E. R., Hechel D., Hodson N. W., Nowik I., Yewdall S. J., Harrison P. M. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin: a study aided by site-directed mutagenesis. Biochem J. 1993 Dec 15;296(Pt 3):721–728. doi: 10.1042/bj2960721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Treffry A., Harrison P. M. Spectroscopic studies on the binding of iron, terbium, and zinc by apoferritin. J Inorg Biochem. 1984 May;21(1):9–20. doi: 10.1016/0162-0134(84)85035-7. [DOI] [PubMed] [Google Scholar]
  32. Van Wuytswinkel O., Savino G., Briat J. F. Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli: influence of N-terminus deletions on protein solubility and core formation in vitro. Biochem J. 1995 Jan 1;305(Pt 1):253–261. doi: 10.1042/bj3050253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wade V. J., Levi S., Arosio P., Treffry A., Harrison P. M., Mann S. Influence of site-directed modifications on the formation of iron cores in ferritin. J Mol Biol. 1991 Oct 20;221(4):1443–1452. doi: 10.1016/0022-2836(91)90944-2. [DOI] [PubMed] [Google Scholar]
  34. Wardeska J. G., Viglione B., Chasteen N. D. Metal ion complexes of apoferritin. Evidence for initial binding in the hydrophilic channels. J Biol Chem. 1986 May 25;261(15):6677–6683. [PubMed] [Google Scholar]
  35. Wicks R. E., Entsch B. Functional genes found for three different plant ferritin subunits in the legume, Vigna unguiculata. Biochem Biophys Res Commun. 1993 Apr 30;192(2):813–819. doi: 10.1006/bbrc.1993.1487. [DOI] [PubMed] [Google Scholar]
  36. Xu B., Chasteen N. D. Iron oxidation chemistry in ferritin. Increasing Fe/O2 stoichiometry during core formation. J Biol Chem. 1991 Oct 25;266(30):19965–19970. [PubMed] [Google Scholar]
  37. Yablonski M. J., Theil E. C. A possible role for the conserved trimer interface of ferritin in iron incorporation. Biochemistry. 1992 Oct 13;31(40):9680–9684. doi: 10.1021/bi00155a022. [DOI] [PubMed] [Google Scholar]
  38. Yang D., Nagayama K. Permeation of small molecules into the cavity of ferritin as revealed by proton nuclear magnetic resonance relaxation. Biochem J. 1995 Apr 1;307(Pt 1):253–256. doi: 10.1042/bj3070253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yariv J., Kalb A. J., Sperling R., Bauminger E. R., Cohen S. G., Ofer S. The composition and the structure of bacterioferritin of Escherichia coli. Biochem J. 1981 Jul 1;197(1):171–175. doi: 10.1042/bj1970171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zhao Z., Malik A., Lee M. L., Watt G. D. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins. Anal Biochem. 1994 Apr;218(1):47–54. doi: 10.1006/abio.1994.1139. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES