Table 2.
AI in the biomarker discovery for PC diagnosis
| Algorithm | Sample size | Data source | Result | Reference |
|---|---|---|---|---|
| RF | 489 samples | RNA seq | AUC 0.945 | Mahawan et al. [40] |
| SVM | 107 cases | MS |
Accuracy 97.4% AUC 0.997 Sensitivity 100% Specificity 95.0% |
Iwano et al. [41] |
| 1D CNN + LSTM | 590 cases | Proteomics |
Accuracy 97% AUC 0.98 |
Karar et al. [42] |
| GLM | 208 cases | Proteomics |
AUC 0.95 Sensitivity 84% Specificity 95% |
Athanasiou et al. [43] |
| GBM | 1023 cases | ELISA |
AUC 0.919 PDAC vs. non-PDAC AUC 0.925 PDAC vs. healthy controls |
Firpo et al. [44] |
| SVM | 1504 cases | mRNA |
AUC 0.985 resecable PC AUC 0.967 all PDAC stages |
Lee et al. [45] |
| SVM | 501 cases | RNAseq |
AUC of 0.936 Sensitivity of 93.68% Specificity of 91.57% |
Yu et al. [46] |
| RF | 100 cases | SMS |
AUC 0.977 Sensitivity 0.94 Specificity 0.94 |
Chen et al. [47] |
| OPLS-DA | 830 samples | Lipidomic MS |
Accuracy 94.18% AUC 0.983 Sensitivity 95.97% Specificity 90.46% |
Worlab et al. [48] |
1D CNN, one-dimensional convolutional neural network, AUC, Area under the curve, DL, Deep learning, ELISA, Enzyme-linked immunosorbent assay, GBM, Generalized boosted regression model, GLM, Generalized linear model, LSTM, Long short-term memory, MS, Mass spectrometry, OPLS-DA, Orthogonal partial least squares discriminant analysis, RF, Random forest, SMS, Shotgun metagenomic sequencing, SVM, Support vector machine