Skip to main content
. 2025 Jun 17;20:15. doi: 10.1186/s13008-025-00158-w

Table 2.

AI in the biomarker discovery for PC diagnosis

Algorithm Sample size Data source Result Reference
RF 489 samples RNA seq AUC 0.945 Mahawan et al. [40]
SVM 107 cases MS

Accuracy 97.4%

AUC 0.997

Sensitivity 100%

Specificity 95.0%

Iwano et al. [41]
1D CNN + LSTM 590 cases Proteomics

Accuracy 97%

AUC 0.98

Karar et al. [42]
GLM 208 cases Proteomics

AUC 0.95

Sensitivity 84%

Specificity 95%

Athanasiou et al. [43]
GBM 1023 cases ELISA

AUC 0.919 PDAC vs. non-PDAC

AUC 0.925 PDAC vs. healthy controls

Firpo et al. [44]
SVM 1504 cases mRNA

AUC 0.985 resecable PC

AUC 0.967 all PDAC stages

Lee et al. [45]
SVM 501 cases RNAseq

AUC of 0.936

Sensitivity of 93.68%

Specificity of 91.57%

Yu et al. [46]
RF 100 cases SMS

AUC 0.977

Sensitivity 0.94

Specificity 0.94

Chen et al. [47]
OPLS-DA 830 samples Lipidomic MS

Accuracy 94.18%

AUC 0.983

Sensitivity 95.97%

Specificity 90.46%

Worlab et al. [48]

1D CNN, one-dimensional convolutional neural network, AUC, Area under the curve, DL, Deep learning, ELISA, Enzyme-linked immunosorbent assay, GBM, Generalized boosted regression model, GLM, Generalized linear model, LSTM, Long short-term memory, MS, Mass spectrometry, OPLS-DA, Orthogonal partial least squares discriminant analysis, RF, Random forest, SMS, Shotgun metagenomic sequencing, SVM, Support vector machine