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ABSTRACT 

This paper confirms HOLDEN'S (1979) suggestion that certain types of 
fitness interactions between a pair of loci in partially self-fertilizing popula- 
tions may promote selection for increased recombination between them. Our 
results are based on both algebraic and computer calculations of the fate of 
alleles a t  a third locus, which control the level of recombination between 
the selected pair. We also show that the behavior of the population mean fit- 
ness as a function of recombination fraction is not necessarily an indicator 
of the direction of selection on recombination in partially selfiig populations. 

I N  a recent detailed examination of a two-locus system with a highly symmetri- 
cal fitness matrix, HOLDEN (1979) discovered that, in some cases, population 

mean fitness in partially selfing populations was an increasing function of the 
recombination fraction. He suggested that modifiers increasing recombination 
would be selected for in such cases. This contradicts the result of our previous 
study (CHARLESWORTH, CHARLESWORTH and STROBECK 1977) of the spread of 
modifiers of recombination in partially selfing populations. However, only three 
different fitness matrices were studied by us, and it remained possible that 
parameter values leading to selection for increased recombination were not in- 
cluded in our study. It seems important to re-examine this question, bearing 
HOLDEN'S new results in mind. In particular, HOLDEN suggested by analogy 
with the random-mating case (and confirmed by computer studies) that, with 
the form of fitness matrix which he studied, the condition for mean fitness to 
increase with recombination fraction (assumed also to determine whether in- 
creased recombination will be favored) is that the fitness matrix and the selfing 
rate must be such that the equilibrium with zero linkage disequilibrium is stable 
for all recombination fractions. HOLDEN finds that this occurs when a quantity 
A ( s )  is negative, where A(s )  is given by 

A(s) = &' (0,s) - W*(o,s )  . 
Here, T%'(O,s) is the mean fitness of the equilibrium population with linkage 
disequilibrium when there is no recombination and the selfing rate is s; W* (0,s) 
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is the mean fitness for the equilibrium population with no linkage disequilibrium, 
in the same circumstances. We have therefore done deterministic computer cal- 
culations of the spread of genes modifying recombination introduced into popu- 
lations at equilibrium under HOLDEN’S (1979) form of fitness matrix. we have 
compared the results with those predicted by the mean fitnesscs and 4(s), and 
find that ~ ( s )  does, in all cases tested, predict the changes in the modifier. We 
have also studied an  asymmetrical fitness matrix related to HOLDEN’S form of 
fitness matrix; with this type of matrix, the difference in mean fitnesses did not 
always predict the changes in the modifier. 

Before describing these results, we will present some analytical results relating 
to the spread of inversions in selfing populations with the form of fitness matrix 
assumed by HOLDEN (1979). The fitness matrix is given in Table 1. 

FATE OF A N  INVERSION 

We assume that a population is at a stable equilibrium under a fitness matrix 
of the form studied by HOLDEN (1979) and that there is no linkage disequi- 
librium. We then introduce an inversion (or, equivalently, a dominant recombi- 
nation suppressor that is completely linked to the selected loci). It is possible to 
derive an expression for the rate of change of such an element when introduced 
at low frequency into a population with a low selfing rate (s) and with an initial 
recombination fraction R between the selected loci. This calculation is outlined 
in the APPENDIX. The asymptotic relative rate of change in frequency of an in- 
version proves to be given by the following expression: 

Ap - 4sR(I-R)(1  +a-,%) 
P (I + a + 2 b ) 2  7 

-- 

where p is the inversion frequency, and a and b are the two parameters of HOL- 
D E N ~ ~  fitness matrix (see Table 1 ) .  Equation (1) shows that the sign of the 
change does not depend on R (provided that R is above the critical value that 
guarantees no linkage disequilibrium). 

It is convenient to specify the fitness matrix in the more general form of LANG- 
LEY and CROW (1974), as shown in Table 1.  With this notation, the two selected 

TABLE 1 

Comparison of HOLDEN’S fitness matrix (aboue) with a more general form of 
fitness matriz (below) 

AA An M 

BB b a { l - a , ~ b , - k ,  I-b, 1 -n,-b,--k, 

Bb b 1 b { 1-a, 1 1 -a2 

b a { l - a l ~ b 2 - - k ,  I-b, l--a,-b,--k4 
bb 
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loci interact additively if all the ki values are zero. If the k+ are all equal, and if 
a, = b, = a, = b,, we have the form of fitness matrix used by HOLDEN (1979) 
with a, = b, = az = b, = 1 - b, and k, = k2 = k, = k, = 2b - a - 1 = k, say. 
Thus, the term 1 4- a - 2b in the numerator of Equation (1) is equal to -k. 
Equation (1) therefore shows that, when there is no epistasis, the inversion is 
not expected to change in frequency. When the double homozygotes have lower 
fitness than predicted from the fitness of the single homozygotes with additivity 
across loci, Equation (1) predicts that an inversion will be eliminated, whereas 
it should spread if the epistasis is in the opposite direction (k negative). 

The value of these results depends on the relations between the conditions 
under which an inversion will spread and those governing the spread or elimi- 
nation of genic modifiers of recombination, which might have lesser effects and 
which might be linked or unlinked, dominant or recessive, or of intermediate 
dominance. In previous studies (e.g., CHARLESWORTH 1976), the direction of 
change of an inversion has been found to predict that of genic modifiers in all 
cases. The computer results described below gave the same result, unless the 
selfing rate was very high, in which case the approximations involved in obtain- 
ing Equation (1 ) are not valid. 

RESULTS O F  COMPUTER CALCULATIONS 

We have used a three-locus model of the type described by CHARLESWORTH, 
CHARLESWORTH and STROBECK (1977). The alleles at one locus (the modifier 
locus, C) control the recombination fraction between the other two (the selected 
loci, A and B )  . The modifier locus was assumed to be to the right of the selected 
loci and linked to it with recombination fraction RBO. We assumed no interfer- 
ence. The population was run to equilibrium before adding a low frequency of 
the modifier allele in one gamete type. The rate of increase ( A p / p )  of the modi- 
fier was followed for some generations until it became constant; this rate was 
taken as an estimate of the asymptotic rate of increase of the modifier when rare. 
The rate did not depend on the initial modifier frequency in any of a number of 
cases tested; a value of 0.00025 for the initial frequency was used in most of 
the runs. 

We first made some comparisons between rates of increase of inversions pre- 
dicted by Equation (1) and those observed in the computer runs. The initial re- 
combination fraction between the selected loci was assumed to be 0.5. The agree- 
ment is very good with both positive and negative k values (which lead to elimi- 
nation and incorporation of inversions, respectively), when s is small. Quite good 
agreement is maintained even when s is not very low, but serious discrepancies 
are seen when s is very high and k is positive, when selection for increased re- 
combination may be incorrectly predicted. When k is zero, increased s values 
lead to increased selection for an inversion. Similar results were obtained with 
other initial R values. 

Runs with genic modifiers of recombination, rather than inversions, were also 
done. Table 2 shows results with some examples of HOLDEN’S (1979) form of 
fitness matrix. As in HOLDEN’S (1979) results, the sign of A($) correctly predicts 
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TABLE 2 

Results of computer runs of unlinked modifiers with intermediate dominance 

k a s  

Difference in mean fitness 
between equilibrium 
with R=O and that 

with R z 0 . 5  

0 0.8 0.1 
0.5 
0.8 

0.1 
0.5 
0.8 

0.1 
0.5 
0.8 

0.02 0.78 0.01 

0.04 0.76 0.01 

0 0.6 0.1 
0.5 
0.8 

0.04 0.56 0.1 
0.5 
0.8 

0.2 0.4 0.1 
0.5 
0.8 

b = 0.9 
0.00025 
0.00153 
0.00203 

-0.00001 
-0.00013 
-0.00031 

0.00007 
-0.00003 
-0.00026 
-0.00084 
-0.00046 

0.00120 
0 00759 
0.01270 

0.00115 
0.01071 

b = 0.8 

-0.00026 

-0.00155 
-0.00439 

0.00643 

Rate of spread of modifier 
Increasmg Decreasing 

R from R from 
0 to 0.5 0.5 to 0 ____ 

-0.00013 
-0.00108 
,-0.00176 

0.00001 
0.00010 
0.00027 

-0.00007 
0 . 0 0 2  
0.00023 
0.00080 
0.004.9 

-0.00083 
-0.00684 
.-o.o 1482 

0.00025 
-0.00108 
-0.01326 

0.00154 
0.00522 

-0.00966 

0 
0.00008 
0.00019 

-0.00004 
-0.001104 
-0.0001 1 

o.oooo1 
0 

-0.00008 
-0.00029 
-0.00019 

0.00001 
0.00054 
0.0024l5 

-0.00009 
0.00009 
0.00189 

-0.00056 
-0.00205 

0.00164 

the sigil of the difference in mean fitness between the equilibrium with R = 0 
(which may have linkage disequilibrium if k is negative, or if k is small and s is 
high enough) and that with R = 0.5 (where there is no linkage disequilibrium 
with these fitness matrices). In those cases in which increased recombination was 
selected against, the mean fitness was highest when the recombination fraction 
between the selected loci was zero; at the initial equilibrium with R = 0, there 
was linkage disequilibrium (D = 0.25). When the mean fitness increased with 
R, modifiers increasing recombination spread, and modifiers decreasing it from 
an initial value of 0.5 were eliminated. 

The effect of changes in the selfing rate may be summarized as follows (see 
Table 2). With a value of k( > 0) giving a fitness matrix that can generate se- 
lection for increased recombination, there is no lower limit to the value of s that 
produces such selection. Selection is weak when s is very small, and increases to 
a maximum when s reaches some value less than 1. For higher values of s, selec- 
tion for recombination weakens again, and there is often a critical s value beyond 
which the same fitness matrix now produces selection for reduced, rather than 
increased recombination. This s value tends to be lower, the lower the value of k. 
Thus, with this form of fitness matrix, selection for increased recombination 
occurs only with k > 0, and even then only when s is not too high. 
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In all cases tested, we found that when a modifier increasing recombination 
from zero increased in frequency, a modifier reducing recombination was 
eliminated, and vice versa. This suggests that the equilibrium recombination 
fraction that is reached under selection is always 0 or 0.5 with this form of selec- 
tion. This has been confirmed for a selected set of parameter values, by starting 
the runs with a range of initial recombination fractions between the selected loci 
and introducing modifiers either increasing or decreasing that value. Further- 
more, the equilibrium mean fitness was always found to be either a monotoni- 
cally increasing or decreasing function of recombination fraction, for this form 
of fitness matrix. 

We have also studied the effect of recessivity of the modifier gene, and of 
its linkage to the selected Ioci. With a recessive modifier, the changes were 
always the same direction as with intermediate dominance, but were slower, 
often considerably so. As would be expected, this effect was especially notice- 
able when s was low. A linked modifier also increased more slowly than one 
unlinked to the selected loci; with R E G  = 0.05, the rate of increase of the modifier 
when the starting recombination fraction was zero was, in all cases tested, 
slightly less than for the case of REc = 0.5. 

Finally, runs with a variant of the basic fitness matrix were done in order to see 
the effects, if any, of making the matrix asymmetrical. To preserve a single 
parameter k as an epistasis measure, the asymmetry was introduced by setting 
a, = b, = 0.1, as = be = 0.2.At equilibrium, these systems always had linkage 
disequilibrium, which was still present (though small) when the selected loci 
recombined freely. With these parameter values, we nevertheless found that 
with all positive values of k (0.02 and higher), increased recombination was 
favored. We could not use high selfing rates, because fixation of one gamete type 
occurred. The maximum value of s used was therefore 0.5, in most cases. I t  is 
interesting to note that, with some parameter sets (e.g., k = 0.04, s = 0.5 or k = 
0.1, s =OB), the population mean fitness was lower when the recombination 
fraction was 0.5 than when it was zero. In these cases, the mean fitness decreased 
as R increased from zero, then increased again, but never rose to as high a value 
as with complete linkage. Nevertheless, when a modifier increasing the recombi- 
nation fraction from zero to 0.5 was introduced, it spread, the mean fitness de- 
creasing as it did so. 

DISCUSSION 

The results described above clearly show that our earlier eeneralization 
( CHARLESWORTH, CHARLESWORTH and STROBECK 1977) was unjustified, and 
that a constant fitness matrix can, in a partially selfing population, give selection 
for increased recombination. Therefore, in order to account for the observation 
that recombination rates tend to be higher in selfing than in outcrossing species 
[see CHARLESWORTH, CHARLESWORTH and STROBECK (1977) for references] , it 
may be unnecessary to seek for models of selection for increased recombination 
that become stronger under selfing; we now have a mechanism that promotes 
recombination when there is some selfing, but not when there is random mating, 
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all other population parameters being unaltered. To accept this as the explana- 
tion of the findings in selfing species of plants, we would have to know that fit- 
ness matrices that generate selection for increased recombination when there is 
selfing are likely to be common. HOLDEN’S (1979)  form of fitness matrix is, of 
course, a very special case and unlikely to be generally applicable, but this does 
not imply that other more realistic types of fitness matrix would not have the 
same property. We have studied one form of an asymmetrical case, and found 
that the selection for increased recombination is preserved. The suggestion that 
the loci must interact in such a way that homozygosity for both loci gives lower 
fitness than would be predicted from the single-locus effects seems to be helpful, 
but is hard to generalize; in the general case with four epistasis parameters, there 
seems little alternative to obtaining empirical results by computer runs. 

Furthermore, this explanation for increased recombination in selfing species 
encounters difficulties in cases with high selfing rates. Even when variation is 
preserved, high selfing rates tend to give selection for decreased recombination, 
o r  to weaken any selection for increased recombination that exists with less 
selfing. This model is therefore more attractive as an explanation of differences 
between populations with low to moderate selfing rates than for very high rates 
of selfing. 

The result that with selfing the mean fitness may be a nonmonotonic function 
of the recombination fraction is new, but a similar relation has previously been 
discovered by KARLIN and CARMELLI (19.75) in random-mating populations; in 
some of the examples studied by these authors, mean fitness was highest when 
there was no recombination and declined as recombination increased, but then 
increased again. FELDMAN (personal communication), has shown that a modi- 
fier decreasing recombination will always spread in a random-mating popula- 
tion that is at equilibrium with linkage disequilibrium, regardless of the rela- 
iion between the recombination fraction and the equilibrium mean fitness. A 
modifier reducing recombination from some high rate to that rate which gives 
the minimum population mean fitness at equilibrium would therefore presum- 
ably spread, resulting in a decrease of mean fitness. We have also found cases 
where mean fitness decreased during the spread of a modifier, in this case one 
that increases recombination; this occurred with certain asymmetric fitness 
matrices that gave the maximum mean fitness when there was no recombination. 

This work was stimulated by our reading L. R. HOLDEN’S paper before its publication. We 
thank him for his comments on the f i s t  draft of this paper. 
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APPENDIX 

We shall use the notation of HOLDEN (1979) throughout this APPENDIX. Let the frequencies 
of the gametes AB, Ab, aB and ab in a given generation be zl, I*, r3 and z4, respectively, at 
the stage before selection has taken place. Let the frequency before selection of the genotype 
formed from gametes i and j be g i i .  If wi i  is the fitness of this genotype and W is the population 
mean fitness, S g i j w i j ,  the frequency after selection but before recombination is g f i i  = gi iwi j /W.  
The corresponding frequency of gamete i is z'. = g'ii + '/2 2 gIii. 

An inversion in gamete type 1 is introduced into the population. It can be treated as an addi- 
tional gamete whose frequency is zg and has the same fitness effects as gamete 1 (k7 wli =w5i )  
but fails to recombine. Due to the assumption of self fertilization, it is necessary to consider the 
frequencies of all five possible genotypes that contain the inversion, ggi (i = 1 , . , . , 4 ) .  It is 
convenient to use these as the components of a 5-dimensional vector, y, which describes the 
state of the population with respect to the inversion. 

In  order to simplify the calculations, we assume that the inversion is introduced at  a low 
frequency into a population at a stable equilibrium with zero linkage disequilibrium and with 
fitnesses of the symmetrical form assumed by HOLDEN (19'79). In such a population, the gamete 
frequencies I (i =  1 , .  . ., 4) are all equal to %, and the mean fitness takes the value W ,  given 
by the cubic equation, 

i f$  

(2&-sb) {2 (b-a )  [2h'-s(l.-2z)] - (1-a) (I-s)%} - 
A A  

2(b-a) ( I - s ) W [ ~ W - S ( ~ - ~ Z ) ]  = 0 ,  (A.1) 

where z =R(l--R) (HOLDEN 1979). 

matrix equation for y, the value of y in the next generation 
If second-order terms in the inversion frequencies are neglected, we obtain the following - 

where 

A =  

4 b  

(I-s)a 

4 w  

sa 

\4iv 

(l-s)b 

4 8  

4 8  

4& 

4 8  

4% 

(1Ss)b  -- 

(l-s)b 

(l-s)b -- 

sb 

- 
Y = A Y  7 

( l , -~)  b (1-s)a 

4& 

4 8  

(l+s)b 

4 8  

(1-s)b -- 

-_ 

(1-s)b 

2& 

2& 

(I-s)a -- 

(I-s)a 

2& 

(1-s)a 

4 8  

4% 

sb --_ 

4% 

4 k  

S 

(A.2a) 

(A.2b) i 
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If A, is the leading eigenvalue of A, the asymptotic rate of increase in the frequency of the 
inversion while still rare is given by the equation 

The Perron-Frobenius theorem applied to A proves that A, is real, positive and unique. Unfor- 
tunately, Equation (A.l) can be solved explicitly only when s = 0, when k = (I+a+2b)/4. 
It is therefore impossible to obtain A, directly when s > 0. We can, however, apply the follow- 
ing method; if we know A, and Sh,/S s at s = 0, we can approximate 1, for small s by 

It is not difficult to see that with s = 0, A has one eigenvalue of unity, and four of zero. (This 
corresponds with the fact that there is no selection for or against a rare inversion in an equilib- 
rium random-mating population with zero linkage disequilibrium [CHARLESWORTH and CHARLES- 
WORTH 19731.) For small s, 1, is therefore generated from this eigenvalue of unity; we can 
apply the rule for differentiating an implicit function to the characteristic equation for A, and 
obtain the relation 

where I is the 5 x 5 unit matrix. 
After considerable algebra, we obtain 

This can be substituted into Equations (A.3) and (A.4) to yield Equation ( I )  of the text. From 
the symmetry of HOLDEN'S (1979) fitness model, this result does not depend on the gamete 
into which the inversion is introduced. 


