Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Feb 15;322(Pt 1):43–48. doi: 10.1042/bj3220043

Glutathione-dependent activities of Trypanosoma cruzi p52 makes it a new member of the thiol:disulphide oxidoreductase family.

M Moutiez 1, E Quéméneur 1, C Sergheraert 1, V Lucas 1, A Tartar 1, E Davioud-Charvet 1
PMCID: PMC1218156  PMID: 9078241

Abstract

Trypanothione: glutathione disulphide thioltransferase of Try-panosoma cruzi (p52) is a key enzyme in the regulation of the intracellular thiol-disulphide redox balance by reducing glutathione disulphide. Here we show that p52, like other disulphide oxidoreductases possessing the CXXC active site motif, catalyses the reduction of low-molecular-mass disulphides (hydroxyethyl-disulphide) as well as protein disulphides (insulin). However, p52 seems to be a poor oxidase under physiological conditions as evidenced by its very low rate for oxidative renaturation of reduced ribonuclease A Like thioltransferase and protein disulphide isomerase, p52 was found to possess a glutathione-dependent dehydroascorbate reductase activity. The kinetic parameters were in the same range as those determined for mammalian dehydroascorbate reductases. A catalytic mechanism taking into account both trypanothione- and glutathione-dependent reduction reactions was proposed. This newly characterized enzyme is specific for the parasite and provides a new target for specific chemotherapy.

Full Text

The Full Text of this article is available as a PDF (323.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn B. Y., Moss B. Glutaredoxin homolog encoded by vaccinia virus is a virion-associated enzyme with thioltransferase and dehydroascorbate reductase activities. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7060–7064. doi: 10.1073/pnas.89.15.7060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aslund F., Ehn B., Miranda-Vizuete A., Pueyo C., Holmgren A. Two additional glutaredoxins exist in Escherichia coli: glutaredoxin 3 is a hydrogen donor for ribonucleotide reductase in a thioredoxin/glutaredoxin 1 double mutant. Proc Natl Acad Sci U S A. 1994 Oct 11;91(21):9813–9817. doi: 10.1073/pnas.91.21.9813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Axelsson K., Eriksson S., Mannervik B. Purification and characterization of cytoplasmic thioltransferase (glutathione:disulfide oxidoreductase) from rat liver. Biochemistry. 1978 Jul 25;17(15):2978–2984. doi: 10.1021/bi00608a006. [DOI] [PubMed] [Google Scholar]
  4. Bushweller J. H., Aslund F., Wüthrich K., Holmgren A. Structural and functional characterization of the mutant Escherichia coli glutaredoxin (C14----S) and its mixed disulfide with glutathione. Biochemistry. 1992 Sep 29;31(38):9288–9293. doi: 10.1021/bi00153a023. [DOI] [PubMed] [Google Scholar]
  5. Carnieri E. G., Moreno S. N., Docampo R. Trypanothione-dependent peroxide metabolism in Trypanosoma cruzi different stages. Mol Biochem Parasitol. 1993 Sep;61(1):79–86. doi: 10.1016/0166-6851(93)90160-y. [DOI] [PubMed] [Google Scholar]
  6. Clark D., Albrecht M., Arévalo J. Ascorbate variations and dehydroascorbate reductase activity in Trypanosoma cruzi epimastigotes and trypomastigotes. Mol Biochem Parasitol. 1994 Jul;66(1):143–145. doi: 10.1016/0166-6851(94)90045-0. [DOI] [PubMed] [Google Scholar]
  7. Crook E. M. The system dehydroascorbic acid-glutathione. Biochem J. 1941 Mar;35(3):226–236. doi: 10.1042/bj0350226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eklund H., Gleason F. K., Holmgren A. Structural and functional relations among thioredoxins of different species. Proteins. 1991;11(1):13–28. doi: 10.1002/prot.340110103. [DOI] [PubMed] [Google Scholar]
  9. Fairlamb A. H., Blackburn P., Ulrich P., Chait B. T., Cerami A. Trypanothione: a novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science. 1985 Mar 22;227(4693):1485–1487. doi: 10.1126/science.3883489. [DOI] [PubMed] [Google Scholar]
  10. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  11. Freedman R. B. The formation of protein disulphide bonds. Curr Opin Struct Biol. 1995 Feb;5(1):85–91. doi: 10.1016/0959-440x(95)80013-q. [DOI] [PubMed] [Google Scholar]
  12. Guagliardi A., de Pascale D., Cannio R., Nobile V., Bartolucci S., Rossi M. The purification, cloning, and high level expression of a glutaredoxin-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem. 1995 Mar 17;270(11):5748–5755. doi: 10.1074/jbc.270.11.5748. [DOI] [PubMed] [Google Scholar]
  13. Hirano N., Shibasaki F., Sakai R., Tanaka T., Nishida J., Yazaki Y., Takenawa T., Hirai H. Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur J Biochem. 1995 Nov 15;234(1):336–342. doi: 10.1111/j.1432-1033.1995.336_c.x. [DOI] [PubMed] [Google Scholar]
  14. Holmgren A. Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli. J Biol Chem. 1979 May 10;254(9):3664–3671. [PubMed] [Google Scholar]
  15. Holmgren A. Thioredoxin. Annu Rev Biochem. 1985;54:237–271. doi: 10.1146/annurev.bi.54.070185.001321. [DOI] [PubMed] [Google Scholar]
  16. Hsu M. P., Muhich M. L., Boothroyd J. C. A developmentally regulated gene of trypanosomes encodes a homologue of rat protein-disulfide isomerase and phosphoinositol-phospholipase C. Biochemistry. 1989 Jul 25;28(15):6440–6446. doi: 10.1021/bi00441a042. [DOI] [PubMed] [Google Scholar]
  17. Katti S. K., Robbins A. H., Yang Y., Wells W. W. Crystal structure of thioltransferase at 2.2 A resolution. Protein Sci. 1995 Oct;4(10):1998–2005. doi: 10.1002/pro.5560041005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lundström-Ljung J., Holmgren A. Glutaredoxin accelerates glutathione-dependent folding of reduced ribonuclease A together with protein disulfide-isomerase. J Biol Chem. 1995 Apr 7;270(14):7822–7828. doi: 10.1074/jbc.270.14.7822. [DOI] [PubMed] [Google Scholar]
  19. Lyles M. M., Gilbert H. F. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry. 1991 Jan 22;30(3):613–619. doi: 10.1021/bi00217a004. [DOI] [PubMed] [Google Scholar]
  20. Maellaro E., Del Bello B., Sugherini L., Santucci A., Comporti M., Casini A. F. Purification and characterization of glutathione-dependent dehydroascorbate reductase from rat liver. Biochem J. 1994 Jul 15;301(Pt 2):471–476. doi: 10.1042/bj3010471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Meister A. On the antioxidant effects of ascorbic acid and glutathione. Biochem Pharmacol. 1992 Nov 17;44(10):1905–1915. doi: 10.1016/0006-2952(92)90091-v. [DOI] [PubMed] [Google Scholar]
  22. Moutiez M., Aumercier M., Schöneck R., Meziane-Cherif D., Lucas V., Aumercier P., Ouaissi A., Sergheraert C., Tartar A. Purification and characterization of a trypanothione-glutathione thioltransferase from Trypanosoma cruzi. Biochem J. 1995 Sep 1;310(Pt 2):433–437. doi: 10.1042/bj3100433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ouaissi A., Guevara-Espinoza A., Chabé F., Gomez-Corvera R., Taibi A. A novel and basic mechanism of immunosuppression in Chagas' disease: Trypanosoma cruzi releases in vitro and in vivo a protein which induces T cell unresponsiveness through specific interaction with cysteine and glutathione. Immunol Lett. 1995 Dec;48(3):221–224. doi: 10.1016/0165-2478(95)02463-8. [DOI] [PubMed] [Google Scholar]
  24. Ouaissi M. A., Dubremetz J. F., Schöneck R., Fernandez-Gomez R., Gomez-Corvera R., Billaut-Mulot O., Taibi A., Loyens M., Tartar A., Sergheraert C. Trypanosoma cruzi: a 52-kDa protein sharing sequence homology with glutathione S-transferase is localized in parasite organelles morphologically resembling reservosomes. Exp Parasitol. 1995 Dec;81(4):453–461. doi: 10.1006/expr.1995.1138. [DOI] [PubMed] [Google Scholar]
  25. Pigiet V. P., Schuster B. J. Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7643–7647. doi: 10.1073/pnas.83.20.7643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rose R. C., Bode A. M. Comments on the glutathione-ascorbic acid redox couple. Free Radic Biol Med. 1995 May;18(5):955–956. doi: 10.1016/0891-5849(95)90002-0. [DOI] [PubMed] [Google Scholar]
  27. Rose R. C., Bode A. M. Comments on the glutathione-ascorbic acid redox couple. Free Radic Biol Med. 1995 May;18(5):955–956. doi: 10.1016/0891-5849(95)90002-0. [DOI] [PubMed] [Google Scholar]
  28. Rose R. C., Bode A. M. Tissue-mediated regeneration of ascorbic acid: is the process enzymatic? Enzyme. 1992;46(4-5):196–203. doi: 10.1159/000468788. [DOI] [PubMed] [Google Scholar]
  29. Schöneck R., Plumas-Marty B., Taibi A., Billaut-Mulot O., Loyens M., Gras-Masse H., Capron A., Ouaissi A. Trypanosoma cruzi cDNA encodes a tandemly repeated domain structure characteristic of small stress proteins and glutathione S-transferases. Biol Cell. 1994;80(1):1–10. doi: 10.1016/0248-4900(94)90011-6. [DOI] [PubMed] [Google Scholar]
  30. Stahl R. L., Liebes L. F., Silber R. Glutathione dehydrogenase (ascorbate). Methods Enzymol. 1986;122:10–12. doi: 10.1016/0076-6879(86)22140-0. [DOI] [PubMed] [Google Scholar]
  31. Tagaya Y., Maeda Y., Mitsui A., Kondo N., Matsui H., Hamuro J., Brown N., Arai K., Yokota T., Wakasugi H. ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 1989 Mar;8(3):757–764. doi: 10.1002/j.1460-2075.1989.tb03436.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wells W. W., Xu D. P. Dehydroascorbate reduction. J Bioenerg Biomembr. 1994 Aug;26(4):369–377. doi: 10.1007/BF00762777. [DOI] [PubMed] [Google Scholar]
  33. Wells W. W., Xu D. P., Yang Y. F., Rocque P. A. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990 Sep 15;265(26):15361–15364. [PubMed] [Google Scholar]
  34. Winkler B. S., Orselli S. M., Rex T. S. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med. 1994 Oct;17(4):333–349. doi: 10.1016/0891-5849(94)90019-1. [DOI] [PubMed] [Google Scholar]
  35. Winkler B. S. Unequivocal evidence in support of the nonenzymatic redox coupling between glutathione/glutathione disulfide and ascorbic acid/dehydroascorbic acid. Biochim Biophys Acta. 1992 Oct 27;1117(3):287–290. doi: 10.1016/0304-4165(92)90026-q. [DOI] [PubMed] [Google Scholar]
  36. YAMAGUCHI M., JOSLYN M. A. Purification and properties of dehydroascorbic acid reductase of peas (Pisum sativum). Arch Biochem Biophys. 1952 Jul;38:451–465. doi: 10.1016/0003-9861(52)90051-9. [DOI] [PubMed] [Google Scholar]
  37. Yang Y. F., Wells W. W. Catalytic mechanism of thioltransferase. J Biol Chem. 1991 Jul 5;266(19):12766–12771. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES