Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Jul 15;325(Pt 2):501–510. doi: 10.1042/bj3250501

Electrogenic H+ pathway contributes to stimulus-induced changes of internal pH and membrane potential in intact neutrophils: role of cytoplasmic phospholipase A2.

K Suszták 1, A Mócsai 1, E Ligeti 1, A Kapus 1
PMCID: PMC1218588  PMID: 9230134

Abstract

The potential role of cytosolic phospholipase A2 (cPLA2) in the regulation of the electrogenic arachidonic acid (AA)-activatable H+ translocator of neutrophils was investigated. (1) The trifluoromethyl ketone analogue of arachidonate (AACOCF3), a newly developed selective blocker of cPLA2, inhibited both the N-formylmethionyl-leucylphenylalanine (fMLP)- and the phorbol-ester-induced rheogenic H+ efflux (K0.5 approximately 5 microM) and abrogated the stimulus-triggered release of AA from these cells. The drug failed to reduce the fMLP-evoked Ca2+ signal or protein tyrosine phosphorylation and did not affect the activity of protein kinase C. By using the patch-clamp technique we verified that the agent did not interfere with the voltage- and the pH-dependent activation of the H+ conductance of the peritoneal macrophages and therefore is not a direct blocker of the H+ channel itself. AACOCF3, however, slightly decreased the AA-induced stimulation of the H+ currents. We conclude that AA, liberated by the agonist-induced stimulation of cPLA2, is a direct activator of H+ conductance. (2) AACOCF3 did not inhibit superoxide generation, indicating that activation of cPLA2 may not be a prerequisite for turning on NADPH oxidase. (3) Since neither acid generation by the oxidase, nor the basal or stimulated Na+/H+ exchange (the predominant acid-eliminating mechanism) were influenced by the drug, we could use AACOCF3 to address whether the H+ channel in fact opens and plays any physiological role during activation of neutrophils. Stimulus-induced cytosolic alkalinization was smaller, whereas depolarization became larger, in the presence of AACOCF3. Stimulated H+ conductance therefore does contribute to intracellular pH (pHi) homoeostasis and membrane potential changes of intact neutrophils.

Full Text

The Full Text of this article is available as a PDF (574.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badwey J. A., Curnutte J. T., Robinson J. M., Berde C. B., Karnovsky M. J., Karnovsky M. L. Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem. 1984 Jun 25;259(12):7870–7877. [PubMed] [Google Scholar]
  2. Balsinde J., Dennis E. A. Distinct roles in signal transduction for each of the phospholipase A2 enzymes present in P388D1 macrophages. J Biol Chem. 1996 Mar 22;271(12):6758–6765. doi: 10.1074/jbc.271.12.6758. [DOI] [PubMed] [Google Scholar]
  3. Barnette M. S., Rush J., Marshall L. A., Foley J. J., Schmidt D. B., Sarau H. M. Effects of scalaradial, a novel inhibitor of 14 kDa phospholipase A2, on human neutrophil function. Biochem Pharmacol. 1994 Apr 29;47(9):1661–1667. doi: 10.1016/0006-2952(94)90545-2. [DOI] [PubMed] [Google Scholar]
  4. Bartoli F., Lin H. K., Ghomashchi F., Gelb M. H., Jain M. K., Apitz-Castro R. Tight binding inhibitors of 85-kDa phospholipase A2 but not 14-kDa phospholipase A2 inhibit release of free arachidonate in thrombin-stimulated human platelets. J Biol Chem. 1994 Jun 3;269(22):15625–15630. [PubMed] [Google Scholar]
  5. Bromberg Y., Pick E. Unsaturated fatty acids as second messengers of superoxide generation by macrophages. Cell Immunol. 1983 Jul 15;79(2):240–252. doi: 10.1016/0008-8749(83)90067-9. [DOI] [PubMed] [Google Scholar]
  6. Brumell J. H., Grinstein S. Serine/threonine kinase activation in human neutrophils: relationship to tyrosine phosphorylation. Am J Physiol. 1994 Dec;267(6 Pt 1):C1574–C1581. doi: 10.1152/ajpcell.1994.267.6.C1574. [DOI] [PubMed] [Google Scholar]
  7. Buday L., Seprödi J., Farkas G., Mészáros G., Romhányi T., Bánhegyi G., Mandl J., Antoni F., Faragó A. Proteolytic activation of protein kinase C in the extracts of cells treated for a short time with phorbol ester. FEBS Lett. 1987 Oct 19;223(1):15–19. doi: 10.1016/0014-5793(87)80501-x. [DOI] [PubMed] [Google Scholar]
  8. Cockcroft S. G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta. 1992 Aug 14;1113(2):135–160. [PubMed] [Google Scholar]
  9. Dana R., Malech H. L., Levy R. The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem J. 1994 Jan 1;297(Pt 1):217–223. doi: 10.1042/bj2970217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DeCoursey T. E., Cherny V. V. Potential, pH, and arachidonate gate hydrogen ion currents in human neutrophils. Biophys J. 1993 Oct;65(4):1590–1598. doi: 10.1016/S0006-3495(93)81198-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. DeCoursey T. E., Cherny V. V. Voltage-activated hydrogen ion currents. J Membr Biol. 1994 Sep;141(3):203–223. doi: 10.1007/BF00235130. [DOI] [PubMed] [Google Scholar]
  12. Demaurex N., Grinstein S., Jaconi M., Schlegel W., Lew D. P., Krause K. H. Proton currents in human granulocytes: regulation by membrane potential and intracellular pH. J Physiol. 1993 Jul;466:329–344. [PMC free article] [PubMed] [Google Scholar]
  13. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  14. Ding J., Badwey J. A. Neutrophils stimulated with a chemotactic peptide or a phorbol ester exhibit different alterations in the activities of a battery of protein kinases. J Biol Chem. 1993 Mar 5;268(7):5234–5240. [PubMed] [Google Scholar]
  15. Durstin M., Durstin S., Molski T. F., Becker E. L., Sha'afi R. I. Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3142–3146. doi: 10.1073/pnas.91.8.3142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fouchier R. A., Schuitemaker H. Molecular determinants of human immunodeficiency virus type I phenotype variability. Eur J Clin Invest. 1996 Mar;26(3):175–185. doi: 10.1046/j.1365-2362.1996.130266.x. [DOI] [PubMed] [Google Scholar]
  17. Geiszt M., Káldi K., Szeberényi J. B., Ligeti E. Thapsigargin inhibits Ca2+ entry into human neutrophil granulocytes. Biochem J. 1995 Jan 15;305(Pt 2):525–528. doi: 10.1042/bj3050525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gilbert J. J., Stewart A., Courtney C. A., Fleming M. C., Reid P., Jackson C. G., Wise A., Wakelam M. J., Harnett M. M. Antigen receptors on immature, but not mature, B and T cells are coupled to cytosolic phospholipase A2 activation: expression and activation of cytosolic phospholipase A2 correlate with lymphocyte maturation. J Immunol. 1996 Mar 15;156(6):2054–2061. [PubMed] [Google Scholar]
  19. Grinstein S., Furuya W. Characterization of the amiloride-sensitive Na+-H+ antiport of human neutrophils. Am J Physiol. 1986 Feb;250(2 Pt 1):C283–C291. doi: 10.1152/ajpcell.1986.250.2.C283. [DOI] [PubMed] [Google Scholar]
  20. Grinstein S., Furuya W. Cytoplasmic pH regulation in phorbol ester-activated human neutrophils. Am J Physiol. 1986 Jul;251(1 Pt 1):C55–C65. doi: 10.1152/ajpcell.1986.251.1.C55. [DOI] [PubMed] [Google Scholar]
  21. Grinstein S., Smith J. D., Onizuka R., Cheung R. K., Gelfand E. W., Benedict S. Activation of Na+/H+ exchange and the expression of cellular proto-oncogenes in mitogen- and phorbol ester-treated lymphocytes. J Biol Chem. 1988 Jun 25;263(18):8658–8665. [PubMed] [Google Scholar]
  22. Henderson L. M., Banting G., Chappell J. B. The arachidonate-activable, NADPH oxidase-associated H+ channel. Evidence that gp91-phox functions as an essential part of the channel. J Biol Chem. 1995 Mar 17;270(11):5909–5916. [PubMed] [Google Scholar]
  23. Henderson L. M., Chappell J. B., Jones O. T. Internal pH changes associated with the activity of NADPH oxidase of human neutrophils. Further evidence for the presence of an H+ conducting channel. Biochem J. 1988 Apr 15;251(2):563–567. doi: 10.1042/bj2510563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Henderson L. M., Chappell J. B., Jones O. T. Superoxide generation by the electrogenic NADPH oxidase of human neutrophils is limited by the movement of a compensating charge. Biochem J. 1988 Oct 1;255(1):285–290. [PMC free article] [PubMed] [Google Scholar]
  25. Henderson L. M., Chappell J. B., Jones O. T. Superoxide generation is inhibited by phospholipase A2 inhibitors. Role for phospholipase A2 in the activation of the NADPH oxidase. Biochem J. 1989 Nov 15;264(1):249–255. doi: 10.1042/bj2640249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Henderson L. M., Chappell J. B., Jones O. T. The superoxide-generating NADPH oxidase of human neutrophils is electrogenic and associated with an H+ channel. Biochem J. 1987 Sep 1;246(2):325–329. doi: 10.1042/bj2460325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Henderson L. M., Chappell J. B. The NADPH-oxidase-associated H+ channel is opened by arachidonate. Biochem J. 1992 Apr 1;283(Pt 1):171–175. doi: 10.1042/bj2830171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Henderson L. M., Moule S. K., Chappell J. B. The immediate activator of the NADPH oxidase is arachidonate not phosphorylation. Eur J Biochem. 1993 Jan 15;211(1-2):157–162. doi: 10.1111/j.1432-1033.1993.tb19882.x. [DOI] [PubMed] [Google Scholar]
  29. Jacobson P. B., Schrier D. J. Regulation of CD11b/CD18 expression in human neutrophils by phospholipase A2. J Immunol. 1993 Nov 15;151(10):5639–5652. [PubMed] [Google Scholar]
  30. Kapus A., Romanek R., Grinstein S. Arachidonic acid stimulates the plasma membrane H+ conductance of macrophages. J Biol Chem. 1994 Feb 18;269(7):4736–4745. [PubMed] [Google Scholar]
  31. Kapus A., Romanek R., Qu A. Y., Rotstein O. D., Grinstein S. A pH-sensitive and voltage-dependent proton conductance in the plasma membrane of macrophages. J Gen Physiol. 1993 Oct;102(4):729–760. doi: 10.1085/jgp.102.4.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kapus A., Suszták K., Ligeti E. Regulation of the electrogenic H+ channel in the plasma membrane of neutrophils: possible role of phospholipase A2, internal and external protons. Biochem J. 1993 Jun 1;292(Pt 2):445–450. doi: 10.1042/bj2920445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kapus A., Szászi K., Ligeti E. Phorbol 12-myristate 13-acetate activates an electrogenic H(+)-conducting pathway in the membrane of neutrophils. Biochem J. 1992 Feb 1;281(Pt 3):697–701. doi: 10.1042/bj2810697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Káldi K., Szászi K., Koncz G., Suszták K., Ligeti E. Arachidonic acid activatable electrogenic H+ transport in the absence of cytochrome b558 in human T lymphocytes. FEBS Lett. 1996 Feb 26;381(1-2):156–160. doi: 10.1016/0014-5793(96)00105-6. [DOI] [PubMed] [Google Scholar]
  35. Káldi K., Szászi K., Suszták K., Kapus A., Ligeti E. Lymphocytes possess an electrogenic H(+)-transporting pathway in their plasma membrane. Biochem J. 1994 Jul 15;301(Pt 2):329–334. doi: 10.1042/bj3010329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Nanda A., Brumell J. H., Nordström T., Kjeldsen L., Sengelov H., Borregaard N., Rotstein O. D., Grinstein S. Activation of proton pumping in human neutrophils occurs by exocytosis of vesicles bearing vacuolar-type H+-ATPases. J Biol Chem. 1996 Jul 5;271(27):15963–15970. doi: 10.1074/jbc.271.27.15963. [DOI] [PubMed] [Google Scholar]
  37. Nanda A., Grinstein S. Chemoattractant-induced activation of vacuolar H+ pumps and of an H(+)-selective conductance in neutrophils. J Cell Physiol. 1995 Dec;165(3):588–599. doi: 10.1002/jcp.1041650317. [DOI] [PubMed] [Google Scholar]
  38. Nanda A., Grinstein S., Curnutte J. T. Abnormal activation of H+ conductance in NADPH oxidase-defective neutrophils. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):760–764. doi: 10.1073/pnas.90.2.760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Nanda A., Grinstein S. Protein kinase C activates an H+ (equivalent) conductance in the plasma membrane of human neutrophils. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10816–10820. doi: 10.1073/pnas.88.23.10816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nanda A., Gukovskaya A., Tseng J., Grinstein S. Activation of vacuolar-type proton pumps by protein kinase C. Role in neutrophil pH regulation. J Biol Chem. 1992 Nov 15;267(32):22740–22746. [PubMed] [Google Scholar]
  41. Nanda A., Romanek R., Curnutte J. T., Grinstein S. Assessment of the contribution of the cytochrome b moiety of the NADPH oxidase to the transmembrane H+ conductance of leukocytes. J Biol Chem. 1994 Nov 4;269(44):27280–27285. [PubMed] [Google Scholar]
  42. Nasmith P. E., Grinstein S. Phorbol ester-induced changes in cytoplasmic Ca2+ in human neutrophils. Involvement of a pertussis toxin-sensitive G protein. J Biol Chem. 1987 Oct 5;262(28):13558–13566. [PubMed] [Google Scholar]
  43. Riendeau D., Guay J., Weech P. K., Laliberté F., Yergey J., Li C., Desmarais S., Perrier H., Liu S., Nicoll-Griffith D. Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J Biol Chem. 1994 Jun 3;269(22):15619–15624. [PubMed] [Google Scholar]
  44. Roberts P. J., Williams S. L., Linch D. C. The regulation of neutrophil phospholipase A2 by granulocyte-macrophage colony-stimulating factor and its role in priming superoxide production. Br J Haematol. 1996 Mar;92(4):804–814. doi: 10.1046/j.1365-2141.1996.432970.x. [DOI] [PubMed] [Google Scholar]
  45. Rodewald E., Tibes U., Maass G., Scheuer W. Induction of cytosolic phospholipase A2 in human leukocytes by lipopolysaccharide. Eur J Biochem. 1994 Aug 1;223(3):743–749. doi: 10.1111/j.1432-1033.1994.tb19048.x. [DOI] [PubMed] [Google Scholar]
  46. Rosskopf D., Frömter E., Siffert W. Hypertensive sodium-proton exchanger phenotype persists in immortalized lymphoblasts from essential hypertensive patients. A cell culture model for human hypertension. J Clin Invest. 1993 Nov;92(5):2553–2559. doi: 10.1172/JCI116865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Schumann M. A., Leung C. C., Raffin T. A. Activation of NADPH-oxidase and its associated whole-cell H+ current in human neutrophils by recombinant human tumor necrosis factor alpha and formyl-methionyl-leucyl-phenylalanine. J Biol Chem. 1995 Jun 2;270(22):13124–13132. doi: 10.1074/jbc.270.22.13124. [DOI] [PubMed] [Google Scholar]
  48. Street I. P., Lin H. K., Laliberté F., Ghomashchi F., Wang Z., Perrier H., Tremblay N. M., Huang Z., Weech P. K., Gelb M. H. Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry. 1993 Jun 15;32(23):5935–5940. doi: 10.1021/bi00074a003. [DOI] [PubMed] [Google Scholar]
  49. Sundler R., Winstedt D., Wijkander J. Acyl-chain selectivity of the 85 kDa phospholipase A2 and of the release process in intact macrophages. Biochem J. 1994 Jul 15;301(Pt 2):455–458. doi: 10.1042/bj3010455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Suszták K., Káldi K., Kapus A., Ligeti E. Ligands of purinergic receptors stimulate electrogenic H(+)-transport of neutrophils. FEBS Lett. 1995 Nov 13;375(1-2):79–82. doi: 10.1016/0014-5793(95)01181-d. [DOI] [PubMed] [Google Scholar]
  51. Wijkander J., Sundler R. A role for protein kinase C-mediated phosphorylation in the mobilization of arachidonic acid in mouse macrophages. Biochim Biophys Acta. 1989 Jan 17;1010(1):78–87. doi: 10.1016/0167-4889(89)90187-0. [DOI] [PubMed] [Google Scholar]
  52. Wijkander J., Sundler R. An 100-kDa arachidonate-mobilizing phospholipase A2 in mouse spleen and the macrophage cell line J774. Purification, substrate interaction and phosphorylation by protein kinase C. Eur J Biochem. 1991 Dec 18;202(3):873–880. doi: 10.1111/j.1432-1033.1991.tb16445.x. [DOI] [PubMed] [Google Scholar]
  53. Xing M., Insel P. A. Protein kinase C-dependent activation of cytosolic phospholipase A2 and mitogen-activated protein kinase by alpha 1-adrenergic receptors in Madin-Darby canine kidney cells. J Clin Invest. 1996 Mar 1;97(5):1302–1310. doi: 10.1172/JCI118546. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES