Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Aug 15;326(Pt 1):279–287. doi: 10.1042/bj3260279

Characterization of the hydrolytic activity of a polyclonal catalytic antibody preparation by pH-dependence and chemical modification studies: evidence for the involvement of Tyr and Arg side chains as hydrogen-bond donors.

M Resmini 1, R Vigna 1, C Simms 1, N J Barber 1, E P Hagi-Pavli 1, A B Watts 1, C Verma 1, G Gallacher 1, K Brocklehurst 1
PMCID: PMC1218666  PMID: 9337880

Abstract

The hydrolyses of 4-nitrophenyl 4'-(3-aza-2-oxoheptyl)phenyl carbonate and of a new, more soluble, substrate, 4-nitrophenyl 4'-(3-aza-7-hydroxy-2-oxoheptyl)phenyl carbonate, each catalysed by a polyclonal antibody preparation elicited in a sheep by use of an analogous phosphate immunogen, were shown to adhere closely to the Michaelis-Menten equation, in accordance with the growing awareness that polyclonal catalytic antibodies may be much less heterogeneous than had been supposed. The particular value of studies on polyclonal catalytic antibodies is discussed briefly. Both the kcat and kcat/K(m) values were shown to increase with increase in pH across a pKa of approx. 9. Group-selective chemical modification studies established that the side chains of tyrosine and arginine residues are essential for catalytic activity, and provided no evidence for the involvement of side chains of lysine, histidine or cysteine residues. The combination of evidence from the kinetic and chemical modification studies and from studies on the pH-dependence of binding suggests that catalysis involves assistance to the reaction of the substrate with hydroxide ions by hydrogen-bond donation at the reaction centre by tyrosine and arginine side chains. This combination of hydrogen-bond donors appears to be a feature common to a number of other hydrolytic catalytic antibodies. High-pKa acidic side chains may be essential for the effectiveness of catalytic antibodies that utilize hydroxide ions.

Full Text

The Full Text of this article is available as a PDF (647.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brocklehurst K. A sound basis for pH-dependent kinetic studies on enzymes. Protein Eng. 1994 Mar;7(3):291–299. doi: 10.1093/protein/7.3.291. [DOI] [PubMed] [Google Scholar]
  2. Brocklehurst K., Little G. Reactions of papain and of low-molecular-weight thiols with some aromatic disulphides. 2,2'-Dipyridyl disulphide as a convenient active-site titrant for papain even in the presence of other thiols. Biochem J. 1973 May;133(1):67–80. doi: 10.1042/bj1330067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brocklehurst S. M., Topham C. M., Brocklehurst K. A general kinetic equation for multihydronic state reactions and rapid procedures for parameter evaluation. Biochem Soc Trans. 1990 Aug;18(4):598–600. doi: 10.1042/bst0180598. [DOI] [PubMed] [Google Scholar]
  4. Brünger A. T., Karplus M. Polar hydrogen positions in proteins: empirical energy placement and neutron diffraction comparison. Proteins. 1988;4(2):148–156. doi: 10.1002/prot.340040208. [DOI] [PubMed] [Google Scholar]
  5. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallacher G., Jackson C. S., Searcey M., Badman G. T., Goel R., Topham C. M., Mellor G. W., Brocklehurst K. A polyclonal antibody preparation with Michaelian catalytic properties. Biochem J. 1991 Nov 1;279(Pt 3):871–881. doi: 10.1042/bj2790871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gallacher G., Jackson C. S., Searcey M., Goel R., Mellor G. W., Smith C. Z., Brocklehurst K. Catalytic antibody activity elicited by active immunisation. Evidence for natural variation involving preferential stabilization of the transition state. Eur J Biochem. 1993 May 15;214(1):197–207. doi: 10.1111/j.1432-1033.1993.tb17913.x. [DOI] [PubMed] [Google Scholar]
  8. Gallacher G., Jackson C. S., Topham C. M., Searcey M., Turner B. C., Badman G. T., Brocklehurst K. Polyclonal-antibody-catalysed hydrolysis of an aryl nitrophenyl carbonate. Biochem Soc Trans. 1990 Aug;18(4):600–601. doi: 10.1042/bst0180600. [DOI] [PubMed] [Google Scholar]
  9. Gallacher G., Searcey M., Jackson C. S., Brocklehurst K. Polyclonal antibody-catalysed amide hydrolysis. Biochem J. 1992 Jun 15;284(Pt 3):675–680. doi: 10.1042/bj2840675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Golinelli-Pimpaneau B., Gigant B., Bizebard T., Navaza J., Saludjian P., Zemel R., Tawfik D. S., Eshhar Z., Green B. S., Knossow M. Crystal structure of a catalytic antibody Fab with esterase-like activity. Structure. 1994 Mar 15;2(3):175–183. doi: 10.1016/s0969-2126(00)00019-8. [DOI] [PubMed] [Google Scholar]
  11. Grassetti D. R., Murray J. F., Jr Determination of sulfhydryl groups with 2,2'- or 4,4'-dithiodipyridine. Arch Biochem Biophys. 1967 Mar;119(1):41–49. doi: 10.1016/0003-9861(67)90426-2. [DOI] [PubMed] [Google Scholar]
  12. Guo J., Huang W., Zhou G. W., Fletterick R. J., Scanlan T. S. Mechanistically different catalytic antibodies obtained from immunization with a single transition-state analog. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1694–1698. doi: 10.1073/pnas.92.5.1694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lerner R. A., Benkovic S. J., Schultz P. G. At the crossroads of chemistry and immunology: catalytic antibodies. Science. 1991 May 3;252(5006):659–667. doi: 10.1126/science.2024118. [DOI] [PubMed] [Google Scholar]
  14. Loncharich R. J., Brooks B. R. The effects of truncating long-range forces on protein dynamics. Proteins. 1989;6(1):32–45. doi: 10.1002/prot.340060104. [DOI] [PubMed] [Google Scholar]
  15. Patten P. A., Gray N. S., Yang P. L., Marks C. B., Wedemayer G. J., Boniface J. J., Stevens R. C., Schultz P. G. The immunological evolution of catalysis. Science. 1996 Feb 23;271(5252):1086–1091. doi: 10.1126/science.271.5252.1086. [DOI] [PubMed] [Google Scholar]
  16. Plou F. J., Kowlessur D., Malthouse J. P., Mellor G. W., Hartshorn M. J., Pinitglang S., Patel H., Topham C. M., Thomas E. W., Verma C. Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im+H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants. J Mol Biol. 1996 Apr 19;257(5):1088–1111. doi: 10.1006/jmbi.1996.0225. [DOI] [PubMed] [Google Scholar]
  17. Pollack S. J., Jacobs J. W., Schultz P. G. Selective chemical catalysis by an antibody. Science. 1986 Dec 19;234(4783):1570–1573. doi: 10.1126/science.3787262. [DOI] [PubMed] [Google Scholar]
  18. Porstmann B., Porstmann T., Nugel E. Comparison of chromogens for the determination of horseradish peroxidase as a marker in enzyme immunoassay. J Clin Chem Clin Biochem. 1981 Jul;19(7):435–439. doi: 10.1515/cclm.1981.19.7.435. [DOI] [PubMed] [Google Scholar]
  19. Raso V., Stollar B. D. The antibody-enzyme analogy. Comparison of enzymes and antibodies specific for phosphopyridoxyltyrosine. Biochemistry. 1975 Feb 11;14(3):591–599. doi: 10.1021/bi00674a020. [DOI] [PubMed] [Google Scholar]
  20. Schultz P. G., Lerner R. A. From molecular diversity to catalysis: lessons from the immune system. Science. 1995 Sep 29;269(5232):1835–1842. doi: 10.1126/science.7569920. [DOI] [PubMed] [Google Scholar]
  21. Stephens D. B., Iverson B. L. Catalytic polyclonal antibodies. Biochem Biophys Res Commun. 1993 May 14;192(3):1439–1444. doi: 10.1006/bbrc.1993.1577. [DOI] [PubMed] [Google Scholar]
  22. Stephens D. B., Wilmore B. H., Iverson B. L. Polyclonal antibodies and catalysis. Bioorg Med Chem. 1994 Jul;2(7):653–658. doi: 10.1016/0968-0896(94)85014-3. [DOI] [PubMed] [Google Scholar]
  23. Stewart J. D., Krebs J. F., Siuzdak G., Berdis A. J., Smithrud D. B., Benkovic S. J. Dissection of an antibody-catalyzed reaction. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7404–7409. doi: 10.1073/pnas.91.16.7404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stewart J. D., Roberts V. A., Thomas N. R., Getzoff E. D., Benkovic S. J. Site-directed mutagenesis of a catalytic antibody: an arginine and a histidine residue play key roles. Biochemistry. 1994 Mar 1;33(8):1994–2003. doi: 10.1021/bi00174a004. [DOI] [PubMed] [Google Scholar]
  25. Suzuki H. Recent advances in abzyme studies. J Biochem. 1994 Apr;115(4):623–628. doi: 10.1093/oxfordjournals.jbchem.a124385. [DOI] [PubMed] [Google Scholar]
  26. TROWBRIDGE C. G., KREHBIEL A., LASKOWSKI M., Jr SUBSTRATE ACTIVATION OF TRYPSIN. Biochemistry. 1963 Jul-Aug;2:843–850. doi: 10.1021/bi00904a037. [DOI] [PubMed] [Google Scholar]
  27. Tawfik D. S., Chap R., Eshhar Z., Green B. S. pH on-off switching of antibody-hapten binding by site-specific chemical modification of tyrosine. Protein Eng. 1994 Mar;7(3):431–434. doi: 10.1093/protein/7.3.431. [DOI] [PubMed] [Google Scholar]
  28. Topham C. M., Salih E., Frazao C., Kowlessur D., Overington J. P., Thomas M., Brocklehurst S. M., Patel M., Thomas E. W., Brocklehurst K. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J. 1991 Nov 15;280(Pt 1):79–92. doi: 10.1042/bj2800079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tramontano A., Janda K. D., Lerner R. A. Catalytic antibodies. Science. 1986 Dec 19;234(4783):1566–1570. doi: 10.1126/science.3787261. [DOI] [PubMed] [Google Scholar]
  30. Wharton C. W., Cornish-Bowden A., Brocklehurst K., Crook E. M. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses. Biochem J. 1974 Aug;141(2):365–381. doi: 10.1042/bj1410365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zhou G. W., Guo J., Huang W., Fletterick R. J., Scanlan T. S. Crystal structure of a catalytic antibody with a serine protease active site. Science. 1994 Aug 19;265(5175):1059–1064. doi: 10.1126/science.8066444. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES