Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 1;326(Pt 2):299–303. doi: 10.1042/bj3260299

A two-state analysis of co-operative oxygen binding in the three human embryonic haemoglobins.

T Brittain 1, O M Hofmann 1, N J Watmough 1, C Greenwood 1, R E Weber 1
PMCID: PMC1218669  PMID: 9291096

Abstract

The binding of oxygen to the three human embryonic haemoglobins, at pH 7.4, has been shown to occur as a co-operative process. Analysis of oxygen-binding curves obtained in the absence of organic phosphate allosteric effectors shows that the process can be described quite accurately by the two-state model of allosteric action. In the presence of organic phosphates, the binding affinity for oxygen to the T-state of the alpha 2 epsilon 2 and zeta 2 epsilon 2 haemoglobins is significantly lowered. The values of the best-fit two-state parameters determined for each of the embryonic haemoglobins together with the temperature-dependence of the overall equilibrium binding process are discussed in terms of oxygen transfer from the maternal blood supply. Fast-reaction studies have been used to determine the rate constants of the oxygen association and dissociation processes occurring in the R-state and the rate of the allosteric R > T conformational transition. Analysis of these data suggests a likely reason for the high affinity and low co-operativity of the embryonic proteins and identifies the origins of the inability of equilibrium measurements to identify chain non-equivalence in the R-state.

Full Text

The Full Text of this article is available as a PDF (393.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DALZIEL K., O'BRIEN J. R. Side reactions in the deoxygenation of dilute oxyhaemoglobin solutions by sodium dithionite. Biochem J. 1957 Sep;67(1):119–124. [PMC free article] [PubMed] [Google Scholar]
  2. Doyle M. L., Gill S. J., De Cristofaro R., Castagnola M., Di Cera E. Temperature- and pH-dependence of the oxygen-binding reaction of human fetal haemoglobin. Biochem J. 1989 Jun 1;260(2):617–619. doi: 10.1042/bj2600617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Edelstein S. J., Edsall J. T. Linkage between ligand binding and the dimer-tetramer equilibrium in the Monod-Wyman-Changeux model of hemoglobin. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3796–3800. doi: 10.1073/pnas.83.11.3796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Giardina B., Messana I., Scatena R., Castagnola M. The multiple functions of hemoglobin. Crit Rev Biochem Mol Biol. 1995;30(3):165–196. doi: 10.3109/10409239509085142. [DOI] [PubMed] [Google Scholar]
  5. Giardina B., Scatena R., Clementi M. E., Cerroni L., Nuutinen M., Brix O., Sletten S. N., Castagnola M., Condò S. G. Physiological relevance of the overall delta H of oxygen binding to fetal human hemoglobin. J Mol Biol. 1993 Jan 20;229(2):512–516. doi: 10.1006/jmbi.1993.1050. [DOI] [PubMed] [Google Scholar]
  6. Hayashi A., Suzuki T., Shin M. An enzymic reduction system for metmyoglobin and methemoglobin, and its application to functional studies of oxygen carriers. Biochim Biophys Acta. 1973 Jun 15;310(2):309–316. doi: 10.1016/0005-2795(73)90110-4. [DOI] [PubMed] [Google Scholar]
  7. Hofmann O. M., Mould R. M., Brittain T. The incorporation of sulphaem into recombinant adult human haemoglobin produced in a yeast expression system. Protein Eng. 1994 Feb;7(2):281–283. [PubMed] [Google Scholar]
  8. Hofmann O., Brittain T. Ligand binding kinetics and dissociation of the human embryonic haemoglobins. Biochem J. 1996 Apr 1;315(Pt 1):65–70. doi: 10.1042/bj3150065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hofmann O., Carrucan G., Robson N., Brittain T. The chloride effect in the human embryonic haemoglobins. Biochem J. 1995 Aug 1;309(Pt 3):959–962. doi: 10.1042/bj3090959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hofmann O., Mould R., Brittain T. Allosteric modulation of oxygen binding to the three human embryonic haemoglobins. Biochem J. 1995 Mar 1;306(Pt 2):367–370. doi: 10.1042/bj3060367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huehns E. R., Faroqui A. M. Oxygen dissociation properties of human embryonic red cells. Nature. 1975 Mar 27;254(5498):335–337. doi: 10.1038/254335a0. [DOI] [PubMed] [Google Scholar]
  12. Johnson M. L. Analysis of the order of free energy couplings between ligand binding and subunit assembly in human hemoglobin. Biochemistry. 1986 Feb 25;25(4):791–797. doi: 10.1021/bi00352a009. [DOI] [PubMed] [Google Scholar]
  13. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  14. Marden M. C., Hazard E. S., Gibson Q. H. Testing the two-state model: anomalous effector binding to human hemoglobin. Biochemistry. 1986 Nov 18;25(23):7591–7596. doi: 10.1021/bi00371a049. [DOI] [PubMed] [Google Scholar]
  15. Mathews A. J., Rohlfs R. J., Olson J. S., Tame J., Renaud J. P., Nagai K. The effects of E7 and E11 mutations on the kinetics of ligand binding to R state human hemoglobin. J Biol Chem. 1989 Oct 5;264(28):16573–16583. [PubMed] [Google Scholar]
  16. Minton A. P., Imai K. The three-state model: a minimal allosteric description of homotropic and heterotropic effects in the binding of ligands to hemoglobin. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1418–1421. doi: 10.1073/pnas.71.4.1418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mould R. M., Hofmann O. M., Brittain T. Production of human embryonic haemoglobin (Gower II) in a yeast expression system. Biochem J. 1994 Mar 15;298(Pt 3):619–622. doi: 10.1042/bj2980619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Olson J. S., Andersen M. E., Gibson Q. H. The dissociation of the first oxygen molecule from some mammalian oxyhemoglobins. J Biol Chem. 1971 Oct 10;246(19):5919–5923. [PubMed] [Google Scholar]
  19. Philo J. S., Lary J. W. Kinetic investigations of the quaternary enhancement effect and alpha/beta differences in binding the last oxygen to hemoglobin tetramers and dimers. J Biol Chem. 1990 Jan 5;265(1):139–143. [PubMed] [Google Scholar]
  20. Saffran W. A., Gibson Q. H. The effect of pH on carbon monoxide binding to Menhaden hemoglobin. Allosteric transitions in a root effect hemoglobin. J Biol Chem. 1978 May 10;253(9):3171–3179. [PubMed] [Google Scholar]
  21. Sawicki C. A., Gibson Q. H. Properties of the T state of human oxyhemoglobin studies by laser photolysis. J Biol Chem. 1977 Nov 10;252(21):7538–7547. [PubMed] [Google Scholar]
  22. Smith F. R., Ackers G. K. Experimental resolution of cooperative free energies for the ten ligation states of human hemoglobin. Proc Natl Acad Sci U S A. 1985 Aug;82(16):5347–5351. doi: 10.1073/pnas.82.16.5347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vandegriff K. D., Le Tellier Y. C., Winslow R. M., Rohlfs R. J., Olson J. S. Determination of the rate and equilibrium constants for oxygen and carbon monoxide binding to R-state human hemoglobin cross-linked between the alpha subunits at lysine 99. J Biol Chem. 1991 Sep 15;266(26):17049–17059. [PubMed] [Google Scholar]
  24. Weber R. E., Jessen T. H., Malte H., Tame J. Mutant hemoglobins (alpha 119-Ala and beta 55-Ser): functions related to high-altitude respiration in geese. J Appl Physiol (1985) 1993 Dec;75(6):2646–2655. doi: 10.1152/jappl.1993.75.6.2646. [DOI] [PubMed] [Google Scholar]
  25. Weber R. E., Malte H., Braswell E. H., Oliver R. W., Green B. N., Sharma P. K., Kuchumov A., Vinogradov S. N. Mass spectrometric composition, molecular mass and oxygen binding of Macrobdella decora hemoglobin and its tetramer and monomer subunits. J Mol Biol. 1995 Sep 1;251(5):703–720. doi: 10.1006/jmbi.1995.0466. [DOI] [PubMed] [Google Scholar]
  26. Weber R. E. Use of ionic and zwitterionic (Tris/BisTris and HEPES) buffers in studies on hemoglobin function. J Appl Physiol (1985) 1992 Apr;72(4):1611–1615. doi: 10.1152/jappl.1992.72.4.1611. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES