Abstract
An inducible acetylesterase was purified from the culture medium of Aspergillus awamori strain IFO4033 growing on wheat-bran culture by ion-exchange, gel-filtration and hydrophobic-interaction chromatographies. The purified enzyme had an Mr of 31000 and contained Asn-linked oligosaccharides. The enzyme liberated acetic acid from wheat bran, hydrolysed only alpha-naphthyl acetate and propionate when aromatic esters were used for the substrate, and was tentatively classified as a carboxylic esterase (EC 3.1.1.1). The gene encoding acetylesterase was cloned and sequenced. The deduced amino acid sequence showed that acetylesterase was produced as a 304-amino-acid-residue precursor, which was converted post-translationally into a 275-amino-acid-residue mature protein. Part of the sequence of acetylesterase was similar to the region near the active-site serine of lipases of Geotrichum candidum and Candida cylindracea. A unique site of putative Asn-linked oligosaccharides was presented.
Full Text
The Full Text of this article is available as a PDF (520.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature. 1988 Aug 11;334(6182):528–530. doi: 10.1038/334528a0. [DOI] [PubMed] [Google Scholar]
- Faulds C. B., Williamson G. Ferulic acid esterase from Aspergillus niger: purification and partial characterization of two forms from a commercial source of pectinase. Biotechnol Appl Biochem. 1993 Jun;17(Pt 3):349–359. [PubMed] [Google Scholar]
- Faulds C. B., Williamson G. The purification and characterization of 4-hydroxy-3-methoxycinnamic (ferulic) acid esterase from Streptomyces olivochromogenes. J Gen Microbiol. 1991 Oct;137(10):2339–2345. doi: 10.1099/00221287-137-10-2339. [DOI] [PubMed] [Google Scholar]
- Ferreira L. M., Wood T. M., Williamson G., Faulds C., Hazlewood G. P., Black G. W., Gilbert H. J. A modular esterase from Pseudomonas fluorescens subsp. cellulosa contains a non-catalytic cellulose-binding domain. Biochem J. 1993 Sep 1;294(Pt 2):349–355. doi: 10.1042/bj2940349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry S. C. Phenolic components of the primary cell wall. Feruloylated disaccharides of D-galactose and L-arabinose from spinach polysaccharide. Biochem J. 1982 May 1;203(2):493–504. doi: 10.1042/bj2030493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gomi K., Kitamoto K., Kumagai C. Cloning and molecular characterization of the acetamidase-encoding gene (amdS) from Aspergillus oryzae. Gene. 1991 Dec 1;108(1):91–98. doi: 10.1016/0378-1119(91)90491-s. [DOI] [PubMed] [Google Scholar]
- Halgasová N., Kutejová E., Timko J. Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem J. 1994 Mar 15;298(Pt 3):751–755. doi: 10.1042/bj2980751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hespell R. B., O'Bryan-Shah P. J. Esterase activities in Butyrivibrio fibrisolvens strains. Appl Environ Microbiol. 1988 Aug;54(8):1917–1922. doi: 10.1128/aem.54.8.1917-1922.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lüthi E., Love D. R., McAnulty J., Wallace C., Caughey P. A., Saul D., Bergquist P. L. Cloning, sequence analysis, and expression of genes encoding xylan-degrading enzymes from the thermophile "Caldocellum saccharolyticum". Appl Environ Microbiol. 1990 Apr;56(4):1017–1024. doi: 10.1128/aem.56.4.1017-1024.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolles-Clark E., Tenkanen M., Söderlund H., Penttilä M. Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem. 1996 May 1;237(3):553–560. doi: 10.1111/j.1432-1033.1996.0553p.x. [DOI] [PubMed] [Google Scholar]
- McCallum J. A., Taylor I. E., Towers G. H. Spectrophotometric assay and electrophoretic detection of trans-feruloyl esterase activity. Anal Biochem. 1991 Aug 1;196(2):360–366. doi: 10.1016/0003-2697(91)90479-d. [DOI] [PubMed] [Google Scholar]
- McDermid K. P., Forsberg C. W., MacKenzie C. R. Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol. 1990 Dec;56(12):3805–3810. doi: 10.1128/aem.56.12.3805-3810.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shao W., Wiegel J. Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol. 1995 Feb;61(2):729–733. doi: 10.1128/aem.61.2.729-733.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shareck F., Biely P., Morosoli R., Kluepfel D. Analysis of DNA flanking the xlnB locus of Streptomyces lividans reveals genes encoding acetyl xylan esterase and the RNA component of ribonuclease P. Gene. 1995 Feb 3;153(1):105–109. doi: 10.1016/0378-1119(94)00763-i. [DOI] [PubMed] [Google Scholar]
- Shimada Y., Sugihara A., Iizumi T., Tominaga Y. cDNA cloning and characterization of Geotrichum candidum lipase II. J Biochem. 1990 May;107(5):703–707. doi: 10.1093/oxfordjournals.jbchem.a123112. [DOI] [PubMed] [Google Scholar]
- Shimada Y., Sugihara A., Tominaga Y., Iizumi T., Tsunasawa S. cDNA molecular cloning of Geotrichum candidum lipase. J Biochem. 1989 Sep;106(3):383–388. doi: 10.1093/oxfordjournals.jbchem.a122862. [DOI] [PubMed] [Google Scholar]
- Trimble R. B., Maley F. Optimizing hydrolysis of N-linked high-mannose oligosaccharides by endo-beta-N-acetylglucosaminidase H. Anal Biochem. 1984 Sep;141(2):515–522. doi: 10.1016/0003-2697(84)90080-0. [DOI] [PubMed] [Google Scholar]
- Zhu Y. S., Zhang X. Y., Cartwright C. P., Tipper D. J. Kex2-dependent processing of yeast K1 killer preprotoxin includes cleavage at ProArg-44. Mol Microbiol. 1992 Feb;6(4):511–520. doi: 10.1111/j.1365-2958.1992.tb01496.x. [DOI] [PubMed] [Google Scholar]
- von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]