Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Sep 15;326(Pt 3):625–636. doi: 10.1042/bj3260625

Comparative anatomy of the aldo-keto reductase superfamily.

J M Jez 1, M J Bennett 1, B P Schlegel 1, M Lewis 1, T M Penning 1
PMCID: PMC1218714  PMID: 9307009

Abstract

The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short-chain dehydrogenase/reductase superfamily.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhtar M., Wilton D. C., Watkinson I. A., Rahimtula A. D. Substrate activation in pyridine nucleotide-linked reactions: illustrations from the steroid field. Proc R Soc Lond B Biol Sci. 1972 Feb 15;180(1059):167–177. doi: 10.1098/rspb.1972.0012. [DOI] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Amore R., Kötter P., Küster C., Ciriacy M., Hollenberg C. P. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene. 1991 Dec 20;109(1):89–97. doi: 10.1016/0378-1119(91)90592-y. [DOI] [PubMed] [Google Scholar]
  4. Anderson S., Marks C. B., Lazarus R., Miller J., Stafford K., Seymour J., Light D., Rastetter W., Estell D. Production of 2-Keto-L-Gulonate, an Intermediate in L-Ascorbate Synthesis, by a Genetically Modified Erwinia herbicola. Science. 1985 Oct 11;230(4722):144–149. doi: 10.1126/science.230.4722.144. [DOI] [PubMed] [Google Scholar]
  5. Askonas L. J., Ricigliano J. W., Penning T. M. The kinetic mechanism catalysed by homogeneous rat liver 3 alpha-hydroxysteroid dehydrogenase. Evidence for binary and ternary dead-end complexes containing non-steroidal anti-inflammatory drugs. Biochem J. 1991 Sep 15;278(Pt 3):835–841. doi: 10.1042/bj2780835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baker M. E. Unusual evolution of 11beta- and 17beta-hydroxysteroid and retinol dehydrogenases. Bioessays. 1996 Jan;18(1):63–70. doi: 10.1002/bies.950180112. [DOI] [PubMed] [Google Scholar]
  7. Barski O. A., Gabbay K. H., Bohren K. M. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Biochemistry. 1996 Nov 12;35(45):14276–14280. doi: 10.1021/bi9619740. [DOI] [PubMed] [Google Scholar]
  8. Barski O. A., Gabbay K. H., Grimshaw C. E., Bohren K. M. Mechanism of human aldehyde reductase: characterization of the active site pocket. Biochemistry. 1995 Sep 5;34(35):11264–11275. doi: 10.1021/bi00035a036. [DOI] [PubMed] [Google Scholar]
  9. Bartels D., Engelhardt K., Roncarati R., Schneider K., Rotter M., Salamini F. An ABA and GA modulated gene expressed in the barley embryo encodes an aldose reductase related protein. EMBO J. 1991 May;10(5):1037–1043. doi: 10.1002/j.1460-2075.1991.tb08042.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bennett M. J., Schlegel B. P., Jez J. M., Penning T. M., Lewis M. Structure of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase complexed with NADP+. Biochemistry. 1996 Aug 20;35(33):10702–10711. doi: 10.1021/bi9604688. [DOI] [PubMed] [Google Scholar]
  11. Berséus O., Björkhem L. Enzymatic conversion of a delta-4-3-ketosteroid into a 3-alpha-hydroxy-5-beta steroid: mechanism and stereochemistry of hydrogen transfer from NADPH. Bile acids and steroids 190. Eur J Biochem. 1967 Nov;2(4):503–507. doi: 10.1111/j.1432-1033.1967.tb00164.x. [DOI] [PubMed] [Google Scholar]
  12. Billard P., Ménart S., Fleer R., Bolotin-Fukuhara M. Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene. 1995 Aug 30;162(1):93–97. doi: 10.1016/0378-1119(95)00294-g. [DOI] [PubMed] [Google Scholar]
  13. Bohren K. M., Barski O. A., Gabbay K. H. Characterization of a novel murine aldo-keto reductase. Adv Exp Med Biol. 1997;414:455–464. doi: 10.1007/978-1-4615-5871-2_52. [DOI] [PubMed] [Google Scholar]
  14. Bohren K. M., Bullock B., Wermuth B., Gabbay K. H. The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. J Biol Chem. 1989 Jun 5;264(16):9547–9551. [PubMed] [Google Scholar]
  15. Bohren K. M., Grimshaw C. E., Gabbay K. H. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. J Biol Chem. 1992 Oct 15;267(29):20965–20970. [PubMed] [Google Scholar]
  16. Bohren K. M., Grimshaw C. E., Lai C. J., Harrison D. H., Ringe D., Petsko G. A., Gabbay K. H. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry. 1994 Mar 1;33(8):2021–2032. doi: 10.1021/bi00174a007. [DOI] [PubMed] [Google Scholar]
  17. Bohren K. M., Page J. L., Shankar R., Henry S. P., Gabbay K. H. Expression of human aldose and aldehyde reductases. Site-directed mutagenesis of a critical lysine 262. J Biol Chem. 1991 Dec 15;266(35):24031–24037. [PubMed] [Google Scholar]
  18. Borhani D. W., Harter T. M., Petrash J. M. The crystal structure of the aldose reductase.NADPH binary complex. J Biol Chem. 1992 Dec 5;267(34):24841–24847. doi: 10.2210/pdb1abn/pdb. [DOI] [PubMed] [Google Scholar]
  19. Bruce N. C., Willey D. L., Coulson A. F., Jeffery J. Bacterial morphine dehydrogenase further defines a distinct superfamily of oxidoreductases with diverse functional activities. Biochem J. 1994 May 1;299(Pt 3):805–811. doi: 10.1042/bj2990805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Carper D., Nishimura C., Shinohara T., Dietzchold B., Wistow G., Craft C., Kador P., Kinoshita J. H. Aldose reductase and p-crystallin belong to the same protein superfamily as aldehyde reductase. FEBS Lett. 1987 Aug 10;220(1):209–213. doi: 10.1016/0014-5793(87)80905-5. [DOI] [PubMed] [Google Scholar]
  21. Chung S., LaMendola J. Cloning and sequence determination of human placental aldose reductase gene. J Biol Chem. 1989 Sep 5;264(25):14775–14777. [PubMed] [Google Scholar]
  22. Czempinski K., Kruft V., Wöstemeyer J., Burmester A. 4-Dihydromethyltrisporate dehydrogenase from Mucor mucedo, an enzyme of the sexual hormone pathway: purification, and cloning of the corresponding gene. Microbiology. 1996 Sep;142(Pt 9):2647–2654. doi: 10.1099/00221287-142-9-2647. [DOI] [PubMed] [Google Scholar]
  23. Davidson W. S., Flynn T. G. Kinetics and mechanism of action of aldehyde reductase from pig kidney. Biochem J. 1979 Feb 1;177(2):595–601. doi: 10.1042/bj1770595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. De Winter H. L., von Itzstein M. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. Biochemistry. 1995 Jul 4;34(26):8299–8308. doi: 10.1021/bi00026a011. [DOI] [PubMed] [Google Scholar]
  25. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Deyashiki Y., Ogasawara A., Nakayama T., Nakanishi M., Miyabe Y., Sato K., Hara A. Molecular cloning of two human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. Biochem J. 1994 Apr 15;299(Pt 2):545–552. doi: 10.1042/bj2990545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Deyashiki Y., Ohshima K., Nakanishi M., Sato K., Matsuura K., Hara A. Molecular cloning and characterization of mouse estradiol 17 beta-dehydrogenase (A-specific), a member of the aldoketoreductase family. J Biol Chem. 1995 May 5;270(18):10461–10467. doi: 10.1074/jbc.270.18.10461. [DOI] [PubMed] [Google Scholar]
  28. Donohue P. J., Alberts G. F., Hampton B. S., Winkles J. A. A delayed-early gene activated by fibroblast growth factor-1 encodes a protein related to aldose reductase. J Biol Chem. 1994 Mar 18;269(11):8604–8609. [PubMed] [Google Scholar]
  29. Ehrig T., Bohren K. M., Prendergast F. G., Gabbay K. H. Mechanism of aldose reductase inhibition: binding of NADP+/NADPH and alrestatin-like inhibitors. Biochemistry. 1994 Jun 14;33(23):7157–7165. doi: 10.1021/bi00189a019. [DOI] [PubMed] [Google Scholar]
  30. Eklund H., Horjales E., Jörnvall H., Brändén C. I., Jeffery J. Molecular aspects of functional differences between alcohol and sorbitol dehydrogenases. Biochemistry. 1985 Dec 31;24(27):8005–8012. doi: 10.1021/bi00348a025. [DOI] [PubMed] [Google Scholar]
  31. Ellis E. M., Judah D. J., Neal G. E., Hayes J. D. An ethoxyquin-inducible aldehyde reductase from rat liver that metabolizes aflatoxin B1 defines a subfamily of aldo-keto reductases. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10350–10354. doi: 10.1073/pnas.90.21.10350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Farber G. K., Petsko G. A. The evolution of alpha/beta barrel enzymes. Trends Biochem Sci. 1990 Jun;15(6):228–234. doi: 10.1016/0968-0004(90)90035-a. [DOI] [PubMed] [Google Scholar]
  33. Flynn T. G., Green N. C., Bhatia M. B., el-Kabbani O. Structure and mechanism of aldehyde reductase. Adv Exp Med Biol. 1995;372:193–201. doi: 10.1007/978-1-4615-1965-2_25. [DOI] [PubMed] [Google Scholar]
  34. Fujii Y., Watanabe K., Hayashi H., Urade Y., Kuramitsu S., Kagamiyama H., Hayaishi O. Purification and characterization of rho-crystallin from Japanese common bullfrog lens. J Biol Chem. 1990 Jun 15;265(17):9914–9923. [PubMed] [Google Scholar]
  35. Garcia-Perez A., Martin B., Murphy H. R., Uchida S., Murer H., Cowley B. D., Jr, Handler J. S., Burg M. B. Molecular cloning of cDNA coding for kidney aldose reductase. Regulation of specific mRNA accumulation by NaCl-mediated osmotic stress. J Biol Chem. 1989 Oct 5;264(28):16815–16821. [PubMed] [Google Scholar]
  36. Ghosh D., Weeks C. M., Grochulski P., Duax W. L., Erman M., Rimsay R. L., Orr J. C. Three-dimensional structure of holo 3 alpha,20 beta-hydroxysteroid dehydrogenase: a member of a short-chain dehydrogenase family. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10064–10068. doi: 10.1073/pnas.88.22.10064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  38. Grimshaw C. E., Shahbaz M., Putney C. G. Mechanistic basis for nonlinear kinetics of aldehyde reduction catalyzed by aldose reductase. Biochemistry. 1990 Oct 23;29(42):9947–9955. doi: 10.1021/bi00494a027. [DOI] [PubMed] [Google Scholar]
  39. Grindley J. F., Payton M. A., van de Pol H., Hardy K. G. Conversion of Glucose to 2-Keto-l-Gulonate, an Intermediate in l-Ascorbate Synthesis, by a Recombinant Strain of Erwinia citreus. Appl Environ Microbiol. 1988 Jul;54(7):1770–1775. doi: 10.1128/aem.54.7.1770-1775.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Gui T., Tanimoto T., Kokai Y., Nishimura C. Presence of a closely related subgroup in the aldo-ketoreductase family of the mouse. Eur J Biochem. 1995 Jan 15;227(1-2):448–453. doi: 10.1111/j.1432-1033.1995.tb20408.x. [DOI] [PubMed] [Google Scholar]
  41. Hara A., Matsuura K., Tamada Y., Sato K., Miyabe Y., Deyashiki Y., Ishida N. Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. Biochem J. 1996 Jan 15;313(Pt 2):373–376. doi: 10.1042/bj3130373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Harrison D. H., Bohren K. M., Ringe D., Petsko G. A., Gabbay K. H. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry. 1994 Mar 1;33(8):2011–2020. doi: 10.1021/bi00174a006. [DOI] [PubMed] [Google Scholar]
  43. Hoog S. S., Pawlowski J. E., Alzari P. M., Penning T. M., Lewis M. Three-dimensional structure of rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase: a member of the aldo-keto reductase superfamily. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2517–2521. doi: 10.1073/pnas.91.7.2517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Hyndman D. J., Takenoshita R., Vera N. L., Pang S. C., Flynn T. G. Cloning, sequencing, and enzymatic activity of an inducible aldo-keto reductase from Chinese hamster ovary cells. J Biol Chem. 1997 May 16;272(20):13286–13291. doi: 10.1074/jbc.272.20.13286. [DOI] [PubMed] [Google Scholar]
  45. Janecek S. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology? Protein Sci. 1996 Jun;5(6):1136–1143. doi: 10.1002/pro.5560050615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Jaquinod M., Potier N., Klarskov K., Reymann J. M., Sorokine O., Kieffer S., Barth P., Andriantomanga V., Biellmann J. F., Van Dorsselaer A. Sequence of pig lens aldose reductase and electrospray mass spectrometry of non-covalent and covalent complexes. Eur J Biochem. 1993 Dec 15;218(3):893–903. doi: 10.1111/j.1432-1033.1993.tb18445.x. [DOI] [PubMed] [Google Scholar]
  47. Jez J. M., Schlegel B. P., Penning T. M. Characterization of the substrate binding site in rat liver 3alpha-hydroxysteroid/dihydrodiol dehydrogenase. The roles of tryptophans in ligand binding and protein fluorescence. J Biol Chem. 1996 Nov 22;271(47):30190–30198. doi: 10.1074/jbc.271.47.30190. [DOI] [PubMed] [Google Scholar]
  48. Jörnvall H., Persson B., Krook M., Atrian S., Gonzàlez-Duarte R., Jeffery J., Ghosh D. Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995 May 9;34(18):6003–6013. doi: 10.1021/bi00018a001. [DOI] [PubMed] [Google Scholar]
  49. Jörnvall H., Persson M., Jeffery J. Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4226–4230. doi: 10.1073/pnas.78.7.4226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Kador P. F., Sharpless N. E. Pharmacophor requirements of the aldose reductase inhibitor site. Mol Pharmacol. 1983 Nov;24(3):521–531. [PubMed] [Google Scholar]
  51. Kanayama Y., Mori H., Imaseki H., Yamaki S. Nucleotide Sequence of a cDNA Encoding NADP-Sorbitol-6-Phosphate Dehydrogenase from Apple. Plant Physiol. 1992 Nov;100(3):1607–1608. doi: 10.1104/pp.100.3.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Khanna M., Qin K. N., Wang R. W., Cheng K. C. Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3 alpha-hydroxysteroid dehydrogenases. J Biol Chem. 1995 Aug 25;270(34):20162–20168. doi: 10.1074/jbc.270.34.20162. [DOI] [PubMed] [Google Scholar]
  53. Kita K., Matsuzaki K., Hashimoto T., Yanase H., Kato N., Chung M. C., Kataoka M., Shimizu S. Cloning of the aldehyde reductase gene from a red yeast, Sporobolomyces salmonicolor, and characterization of the gene and its product. Appl Environ Microbiol. 1996 Jul;62(7):2303–2310. doi: 10.1128/aem.62.7.2303-2310.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Kondo K. H., Kai M. H., Setoguchi Y., Eggertsen G., Sjöblom P., Setoguchi T., Okuda K. I., Björkhem I. Cloning and expression of cDNA of human delta 4-3-oxosteroid 5 beta-reductase and substrate specificity of the expressed enzyme. Eur J Biochem. 1994 Jan 15;219(1-2):357–363. doi: 10.1111/j.1432-1033.1994.tb19947.x. [DOI] [PubMed] [Google Scholar]
  55. Kubiseski T. J., Flynn T. G. Studies on human aldose reductase. Probing the role of arginine 268 by site-directed mutagenesis. J Biol Chem. 1995 Jul 14;270(28):16911–16917. [PubMed] [Google Scholar]
  56. Kubiseski T. J., Hyndman D. J., Morjana N. A., Flynn T. G. Studies on pig muscle aldose reductase. Kinetic mechanism and evidence for a slow conformational change upon coenzyme binding. J Biol Chem. 1992 Apr 5;267(10):6510–6517. [PubMed] [Google Scholar]
  57. Lacy W. R., Washenick K. J., Cook R. G., Dunbar B. S. Molecular cloning and expression of an abundant rabbit ovarian protein with 20 alpha-hydroxysteroid dehydrogenase activity. Mol Endocrinol. 1993 Jan;7(1):58–66. doi: 10.1210/mend.7.1.8446108. [DOI] [PubMed] [Google Scholar]
  58. Lee S. P., Chen T. H. Molecular cloning of abscisic acid-responsive mRNAs expressed during the induction of freezing tolerance in bromegrass (Bromus inermis Leyss) suspension culture. Plant Physiol. 1993 Mar;101(3):1089–1096. doi: 10.1104/pp.101.3.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Li J., Vrielink A., Brick P., Blow D. M. Crystal structure of cholesterol oxidase complexed with a steroid substrate: implications for flavin adenine dinucleotide dependent alcohol oxidases. Biochemistry. 1993 Nov 2;32(43):11507–11515. [PubMed] [Google Scholar]
  60. McCormack T., McCormack K. Shaker K+ channel beta subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell. 1994 Dec 30;79(7):1133–1135. doi: 10.1016/0092-8674(94)90004-3. [DOI] [PubMed] [Google Scholar]
  61. Miura R., Shiota K., Noda K., Yagi S., Ogawa T., Takahashi M. Molecular cloning of cDNA for rat ovarian 20 alpha-hydroxysteroid dehydrogenase (HSD1). Biochem J. 1994 Apr 15;299(Pt 2):561–567. doi: 10.1042/bj2990561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Oechsner U., Magdolen V., Bandlow W. A nuclear yeast gene (GCY) encodes a polypeptide with high homology to a vertebrate eye lens protein. FEBS Lett. 1988 Sep 26;238(1):123–128. doi: 10.1016/0014-5793(88)80240-0. [DOI] [PubMed] [Google Scholar]
  63. Onishi Y., Noshiro M., Shimosato T., Okuda K. Molecular cloning and sequence analysis of cDNA encoding delta 4-3-ketosteroid 5 beta-reductase of rat liver. FEBS Lett. 1991 Jun 3;283(2):215–218. doi: 10.1016/0014-5793(91)80591-p. [DOI] [PubMed] [Google Scholar]
  64. Pailhoux E. A., Martinez A., Veyssiere G. M., Jean C. G. Androgen-dependent protein from mouse vas deferens. cDNA cloning and protein homology with the aldo-keto reductase superfamily. J Biol Chem. 1990 Nov 15;265(32):19932–19936. [PubMed] [Google Scholar]
  65. Pawlowski J. E., Huizinga M., Penning T. M. Cloning and sequencing of the cDNA for rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. J Biol Chem. 1991 May 15;266(14):8820–8825. [PubMed] [Google Scholar]
  66. Pawlowski J. E., Penning T. M. Overexpression and mutagenesis of the cDNA for rat liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase. Role of cysteines and tyrosines in catalysis. J Biol Chem. 1994 May 6;269(18):13502–13510. [PubMed] [Google Scholar]
  67. Penning T. M., Pawlowski J. E., Schlegel B. P., Jez J. M., Lin H. K., Hoog S. S., Bennett M. J., Lewis M. Mammalian 3 alpha-hydroxysteroid dehydrogenases. Steroids. 1996 Sep;61(9):508–523. doi: 10.1016/s0039-128x(96)00093-1. [DOI] [PubMed] [Google Scholar]
  68. Penning T. M., Talalay P. Inhibition of a major NAD(P)-linked oxidoreductase from rat liver cytosol by steroidal and nonsteroidal anti-inflammatory agents and by prostaglandins. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4504–4508. doi: 10.1073/pnas.80.14.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Petrash J. M., Favello A. D. Isolation and characterization of cDNA clones encoding aldose reductase. Curr Eye Res. 1989 Oct;8(10):1021–1027. doi: 10.3109/02713688908997394. [DOI] [PubMed] [Google Scholar]
  70. Petrash J. M., Harter T. M., Devine C. S., Olins P. O., Bhatnagar A., Liu S., Srivastava S. K. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. J Biol Chem. 1992 Dec 5;267(34):24833–24840. [PubMed] [Google Scholar]
  71. Petrash J. M., Tarle I., Wilson D. K., Quiocho F. A. Aldose reductase catalysis and crystallography. Insights from recent advances in enzyme structure and function. Diabetes. 1994 Aug;43(8):955–959. doi: 10.2337/diab.43.8.955. [DOI] [PubMed] [Google Scholar]
  72. Reardon D., Farber G. K. The structure and evolution of alpha/beta barrel proteins. FASEB J. 1995 Apr;9(7):497–503. doi: 10.1096/fasebj.9.7.7737457. [DOI] [PubMed] [Google Scholar]
  73. Rondeau J. M., Tête-Favier F., Podjarny A., Reymann J. M., Barth P., Biellmann J. F., Moras D. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature. 1992 Jan 30;355(6359):469–472. doi: 10.1038/355469a0. [DOI] [PubMed] [Google Scholar]
  74. Sallaud C., el-Turk J., Bigarré L., Sevin H., Welle R., Esnault R. Nucleotide sequences of three chalcone reductase genes from alfalfa. Plant Physiol. 1995 Jun;108(2):869–870. doi: 10.1104/pp.108.2.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Samaras N., Spithill T. W. The developmentally regulated P100/11E gene of Leishmania major shows homology to a superfamily of reductase genes. J Biol Chem. 1989 Mar 5;264(7):4251–4254. [PubMed] [Google Scholar]
  76. Scheerlinck J. P., Lasters I., Claessens M., De Maeyer M., Pio F., Delhaise P., Wodak S. J. Recurrent alpha beta loop structures in TIM barrel motifs show a distinct pattern of conserved structural features. Proteins. 1992 Apr;12(4):299–313. doi: 10.1002/prot.340120402. [DOI] [PubMed] [Google Scholar]
  77. Stolz A., Hammond L., Lou H., Takikawa H., Ronk M., Shively J. E. cDNA cloning and expression of the human hepatic bile acid-binding protein. A member of the monomeric reductase gene family. J Biol Chem. 1993 May 15;268(14):10448–10457. [PubMed] [Google Scholar]
  78. Takahashi M., Fujii J., Teshima T., Suzuki K., Shiba T., Taniguchi N. Identity of a major 3-deoxyglucosone-reducing enzyme with aldehyde reductase in rat liver established by amino acid sequencing and cDNA expression. Gene. 1993 May 30;127(2):249–253. doi: 10.1016/0378-1119(93)90728-l. [DOI] [PubMed] [Google Scholar]
  79. Tarle I., Borhani D. W., Wilson D. K., Quiocho F. A., Petrash J. M. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. J Biol Chem. 1993 Dec 5;268(34):25687–25693. [PubMed] [Google Scholar]
  80. Terada T., Adachi H., Nanjo H., Fujita N., Takagi T., Nishikawa J., Imagawa M., Nishihara T., Maeda M. Cloning and expression of cDNA encoding bovine liver dihydrodiol dehydrogenase 3, DD3. Adv Exp Med Biol. 1997;414:545–553. doi: 10.1007/978-1-4615-5871-2_62. [DOI] [PubMed] [Google Scholar]
  81. The electronic Plant Gene Register. Plant Physiol. 1996 May;111(1):347–348. doi: 10.1104/pp.111.1.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Tomarev S. I., Zinovieva R. D., Dolgilevich S. M., Luchin S. V., Krayev A. S., Skryabin K. G., Gause G. G., Jr A novel type of crystallin in the frog eye lens. 35-kDa polypeptide is not homologous to any of the major classes of lens crystallins. FEBS Lett. 1984 Jun 11;171(2):297–302. doi: 10.1016/0014-5793(84)80508-6. [DOI] [PubMed] [Google Scholar]
  83. Tomlinson D. R., Stevens E. J., Diemel L. T. Aldose reductase inhibitors and their potential for the treatment of diabetic complications. Trends Pharmacol Sci. 1994 Aug;15(8):293–297. doi: 10.1016/0165-6147(94)90010-8. [DOI] [PubMed] [Google Scholar]
  84. Turner A. J., Illingworth J. A., Tipton K. F. Simulation of biogenic amine metabolism in the brain. Biochem J. 1974 Nov;144(2):353–360. doi: 10.1042/bj1440353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Warren J. C., Murdock G. L., Ma Y., Goodman S. R., Zimmer W. E. Molecular cloning of testicular 20 alpha-hydroxysteroid dehydrogenase: identity with aldose reductase. Biochemistry. 1993 Feb 16;32(6):1401–1406. doi: 10.1021/bi00057a003. [DOI] [PubMed] [Google Scholar]
  86. Watanabe K., Fujii Y., Nakayama K., Ohkubo H., Kuramitsu S., Kagamiyama H., Nakanishi S., Hayaishi O. Structural similarity of bovine lung prostaglandin F synthase to lens epsilon-crystallin of the European common frog. Proc Natl Acad Sci U S A. 1988 Jan;85(1):11–15. doi: 10.1073/pnas.85.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Welle R., Schröder G., Schiltz E., Grisebach H., Schröder J. Induced plant responses to pathogen attack. Analysis and heterologous expression of the key enzyme in the biosynthesis of phytoalexins in soybean (Glycine max L. Merr. cv. Harosoy 63). Eur J Biochem. 1991 Mar 14;196(2):423–430. doi: 10.1111/j.1432-1033.1991.tb15833.x. [DOI] [PubMed] [Google Scholar]
  88. Wermuth B., Omar A., Forster A., di Francesco C., Wolf M., von Wartburg J. P., Bullock B., Gabbay K. H. Primary structure of aldehyde reductase from human liver. Prog Clin Biol Res. 1987;232:297–307. [PubMed] [Google Scholar]
  89. Willey D. L., Caswell D. A., Lowe C. R., Bruce N. C. Nucleotide sequence and over-expression of morphine dehydrogenase, a plasmid-encoded gene from Pseudomonas putida M10. Biochem J. 1993 Mar 1;290(Pt 2):539–544. doi: 10.1042/bj2900539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Wilson D. K., Nakano T., Petrash J. M., Quiocho F. A. 1.7 A structure of FR-1, a fibroblast growth factor-induced member of the aldo-keto reductase family, complexed with coenzyme and inhibitor. Biochemistry. 1995 Nov 7;34(44):14323–14330. doi: 10.1021/bi00044a009. [DOI] [PubMed] [Google Scholar]
  91. Wilson D. K., Tarle I., Petrash J. M., Quiocho F. A. Refined 1.8 A structure of human aldose reductase complexed with the potent inhibitor zopolrestat. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9847–9851. doi: 10.1073/pnas.90.21.9847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Winters C. J., Molowa D. T., Guzelian P. S. Isolation and characterization of cloned cDNAs encoding human liver chlordecone reductase. Biochemistry. 1990 Jan 30;29(4):1080–1087. doi: 10.1021/bi00456a034. [DOI] [PubMed] [Google Scholar]
  93. Yamaoka T., Matsuura Y., Yamashita K., Tanimoto T., Nishimura C. Site-directed mutagenesis of His-42, His-188 and Lys-263 of human aldose reductase. Biochem Biophys Res Commun. 1992 Feb 28;183(1):327–333. doi: 10.1016/0006-291x(92)91647-9. [DOI] [PubMed] [Google Scholar]
  94. Yoshida M., Kuroki Y., Kobayashi E., Tamaoki B. Kinetic mechanism of reduction of testosterone by hepatic 5 beta-reductase of chicken and inhibition of the reductase activity by a secosteroid, an azasteroid and glycyrrhetinic acid. J Steroid Biochem Mol Biol. 1992 Jan;41(1):29–36. doi: 10.1016/0960-0760(92)90221-4. [DOI] [PubMed] [Google Scholar]
  95. Zhao Q., Abeygunawardana C., Talalay P., Mildvan A. S. NMR evidence for the participation of a low-barrier hydrogen bond in the mechanism of delta 5-3-ketosteroid isomerase. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8220–8224. doi: 10.1073/pnas.93.16.8220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. el-Kabbani O., Judge K., Ginell S. L., Myles D. A., DeLucas L. J., Flynn T. G. Structure of porcine aldehyde reductase holoenzyme. Nat Struct Biol. 1995 Aug;2(8):687–692. doi: 10.1038/nsb0895-687. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES