Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Oct 1;327(Pt 1):155–160. doi: 10.1042/bj3270155

Influence of thyroid hormone on the tissue-specific expression of cytochrome c oxidase isoforms during cardiac development.

J Meehan 1, J M Kennedy 1
PMCID: PMC1218775  PMID: 9355747

Abstract

In mammals, cytochrome c oxidase (COX) is composed of 13 different protein subunits. In the rat, two nuclear-encoded subunits, COX VIa and VIII, exist as tissue-specific isoforms: heart and liver. Using Northern-blot analysis, the levels of transcripts for the heart and liver isoforms of VIa and VIII were examined in developing rat hearts. The liver isoform was found to be the predominant form of subunit VIa and the exclusive form of VIII in the 18-day fetal hearts. The mRNA levels of the heart isoform of both subunits increased dramatically to reach adult levels by 14 days. Although the levels of the VIa- and VIII-liver isoform mRNAs remained stable throughout early development, their levels decreased by 40 and 36% respectively between the 18-day fetal stage and 18-day neonatal stage. Therefore the up-regulation of the heart isoforms and down-regulation of the liver isoforms appear to be regulated in a co-ordinated manner during development. To determine if thyroid hormone influences the expression of these developmentally regulated isoforms, the RNA was also extracted from the hearts of 2-week-old hypothyroid rats. The results showed that the levels of VIII-heart and VIa-liver COX mRNAs were approx. 40% lower in the hypothyroid hearts, while VIII-liver and VIa-heart COX isoform expression remained unchanged. These data demonstrate that the isoforms of COX subunits VIa and VIII are not co-ordinately regulated by changes in thyroid hormone levels. Therefore we conclude that, although thyroid hormone influences the expression of isoforms, it appears to do so via a different mechanism from that which regulates the developmental transition.

Full Text

The Full Text of this article is available as a PDF (240.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aggeler R., Capaldi R. A. Yeast cytochrome c oxidase subunit VII is essential for assembly of an active enzyme. Cloning, sequencing, and characterization of the nuclear-encoded gene. J Biol Chem. 1990 Sep 25;265(27):16389–16393. [PubMed] [Google Scholar]
  2. Anthony G., Reimann A., Kadenbach B. Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1652–1656. doi: 10.1073/pnas.90.5.1652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anthony G., Stroh A., Lottspeich F., Kadenbach B. Different isozymes of cytochrome c oxidase are expressed in bovine smooth muscle and skeletal or heart muscle. FEBS Lett. 1990 Dec 17;277(1-2):97–100. doi: 10.1016/0014-5793(90)80817-3. [DOI] [PubMed] [Google Scholar]
  4. Baldwin K. M., Campbell P. J., Hooker A. M., Lewis R. E. Effects of thyroid deficiency and sympathectomy on cardiac enzymes. Am J Physiol. 1979 Jan;236(1):C30–C34. doi: 10.1152/ajpcell.1979.236.1.C30. [DOI] [PubMed] [Google Scholar]
  5. Bonne G., Seibel P., Possekel S., Marsac C., Kadenbach B. Expression of human cytochrome c oxidase subunits during fetal development. Eur J Biochem. 1993 Nov 1;217(3):1099–1107. doi: 10.1111/j.1432-1033.1993.tb18342.x. [DOI] [PubMed] [Google Scholar]
  6. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  7. Chizzonite R. A., Everett A. W., Clark W. A., Jakovcic S., Rabinowitz M., Zak R. Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle. Change in their content during normal growth and after treatment with thyroid hormone. J Biol Chem. 1982 Feb 25;257(4):2056–2065. [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Cooper D. S., Kieffer J. D., Saxe V., Mover H., Maloof F., Ridgway E. C. Methimazole pharmacology in the rat: studies using a newly developed radioimmunoassay for methimazole. Endocrinology. 1984 Mar;114(3):786–793. doi: 10.1210/endo-114-3-786. [DOI] [PubMed] [Google Scholar]
  10. Dowell R. T., Haithcoat J. L., Hasser E. M. Metabolic enzyme response in the pressure-overloaded heart of weanling and adult rats. Proc Soc Exp Biol Med. 1983 Dec;174(3):368–376. doi: 10.3181/00379727-174-41750. [DOI] [PubMed] [Google Scholar]
  11. Dussault J. H., Labrie F. Development of the hypothalamic-pituitary-thyroid axis in the neonatal rat. Endocrinology. 1975 Nov;97(5):1321–1324. doi: 10.1210/endo-97-5-1321. [DOI] [PubMed] [Google Scholar]
  12. Ewart G. D., Zhang Y. Z., Capaldi R. A. Switching of bovine cytochrome c oxidase subunit VIa isoforms in skeletal muscle during development. FEBS Lett. 1991 Nov 4;292(1-2):79–84. doi: 10.1016/0014-5793(91)80839-u. [DOI] [PubMed] [Google Scholar]
  13. Hevner R. F., Wong-Riley M. T. Mitochondrial and nuclear gene expression for cytochrome oxidase subunits are disproportionately regulated by functional activity in neurons. J Neurosci. 1993 May;13(5):1805–1819. doi: 10.1523/JNEUROSCI.13-05-01805.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hood D. A., Simoneau J. A., Kelly A. M., Pette D. Effect of thyroid status on the expression of metabolic enzymes during chronic stimulation. Am J Physiol. 1992 Oct;263(4 Pt 1):C788–C793. doi: 10.1152/ajpcell.1992.263.4.C788. [DOI] [PubMed] [Google Scholar]
  15. Hood D. A., Zak R., Pette D. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits. Eur J Biochem. 1989 Feb 1;179(2):275–280. doi: 10.1111/j.1432-1033.1989.tb14551.x. [DOI] [PubMed] [Google Scholar]
  16. Hopkins S. F., Jr, McCutcheon E. P., Wekstein D. R. Postnatal changes in rat ventricular function. Circ Res. 1973 Jun;32(6):685–691. doi: 10.1161/01.res.32.6.685. [DOI] [PubMed] [Google Scholar]
  17. Jakovcic S., Swift H. H., Gross N. J., Rabinowitz M. Biochemical and stereological analysis of rat liver mitochondria in different thyroid states. J Cell Biol. 1978 Jun;77(3):887–901. doi: 10.1083/jcb.77.3.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kadenbach B., Stroh A., Becker A., Eckerskorn C., Lottspeich F. Tissue- and species-specific expression of cytochrome c oxidase isozymes in vertebrates. Biochim Biophys Acta. 1990 Feb 2;1015(2):368–372. doi: 10.1016/0005-2728(90)90042-3. [DOI] [PubMed] [Google Scholar]
  19. Kennaway N. G., Carrero-Valenzuela R. D., Ewart G., Balan V. K., Lightowlers R., Zhang Y. Z., Powell B. R., Capaldi R. A., Buist N. R. Isoforms of mammalian cytochrome c oxidase: correlation with human cytochrome c oxidase deficiency. Pediatr Res. 1990 Nov;28(5):529–535. doi: 10.1203/00006450-199011000-00024. [DOI] [PubMed] [Google Scholar]
  20. Kennedy J. M., Kelley S. W., Meehan J. M. Ventricular mitochondrial gene expression during development and following embryonic ethanol exposure. J Mol Cell Cardiol. 1993 Feb;25(2):117–131. doi: 10.1006/jmcc.1993.1016. [DOI] [PubMed] [Google Scholar]
  21. Kim K., Lecordier A., Bowman L. H. Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development. Biochem J. 1995 Mar 1;306(Pt 2):353–358. doi: 10.1042/bj3060353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kuhn-Nentwig L., Kadenbach B. Isolation and properties of cytochrome c oxidase from rat liver and quantification of immunological differences between isozymes from various rat tissues with subunit-specific antisera. Eur J Biochem. 1985 May 15;149(1):147–158. doi: 10.1111/j.1432-1033.1985.tb08905.x. [DOI] [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Lenka N., Basu A., Mullick J., Avadhani N. G. The role of an E box binding basic helix loop helix protein in the cardiac muscle-specific expression of the rat cytochrome oxidase subunit VIII gene. J Biol Chem. 1996 Nov 22;271(47):30281–30289. doi: 10.1074/jbc.271.47.30281. [DOI] [PubMed] [Google Scholar]
  25. Lightowlers R., Ewart G., Aggeler R., Zhang Y. Z., Calavetta L., Capaldi R. A. Isolation and characterization of the cDNAs encoding two isoforms of subunit CIX of bovine cytochrome c oxidase. J Biol Chem. 1990 Feb 15;265(5):2677–2681. [PubMed] [Google Scholar]
  26. Lompré A. M., Nadal-Ginard B., Mahdavi V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem. 1984 May 25;259(10):6437–6446. [PubMed] [Google Scholar]
  27. Luciakova K., Nelson B. D. Transcript levels for nuclear-encoded mammalian mitochondrial respiratory-chain components are regulated by thyroid hormone in an uncoordinated fashion. Eur J Biochem. 1992 Jul 1;207(1):247–251. doi: 10.1111/j.1432-1033.1992.tb17044.x. [DOI] [PubMed] [Google Scholar]
  28. Marin-Garcia J., Baskin L. S. Human cytochrome c oxidase during cardiac growth and development. Pediatr Cardiol. 1989 Fall;10(4):212–215. doi: 10.1007/BF02083295. [DOI] [PubMed] [Google Scholar]
  29. Mell O. C., Seibel P., Kadenbach B. Structural organisation of the rat genes encoding liver- and heart-type of cytochrome c oxidase subunit VIa and a pseudogene related to the COXVIa-L cDNA. Gene. 1994 Mar 25;140(2):179–186. doi: 10.1016/0378-1119(94)90542-8. [DOI] [PubMed] [Google Scholar]
  30. Merle P., Kadenbach B. Kinetic and structural differences between cytochrome c oxidases from beef liver and heart. Eur J Biochem. 1982 Jun 15;125(1):239–244. doi: 10.1111/j.1432-1033.1982.tb06674.x. [DOI] [PubMed] [Google Scholar]
  31. Mutvei A., Kuzela S., Nelson B. D. Control of mitochondrial transcription by thyroid hormone. Eur J Biochem. 1989 Mar 1;180(1):235–240. doi: 10.1111/j.1432-1033.1989.tb14638.x. [DOI] [PubMed] [Google Scholar]
  32. Nelson B. D., Luciakova K., Li R., Betina S. The role of thyroid hormone and promoter diversity in the regulation of nuclear encoded mitochondrial proteins. Biochim Biophys Acta. 1995 May 24;1271(1):85–91. doi: 10.1016/0925-4439(95)00014-u. [DOI] [PubMed] [Google Scholar]
  33. Olivetti G., Anversa P., Loud A. V. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations. Circ Res. 1980 Apr;46(4):503–512. doi: 10.1161/01.res.46.4.503. [DOI] [PubMed] [Google Scholar]
  34. Paradies G., Ruggiero F. M., Dinoi P., Petrosillo G., Quagliariello E. Decreased cytochrome oxidase activity and changes in phospholipids in heart mitochondria from hypothyroid rats. Arch Biochem Biophys. 1993 Nov 15;307(1):91–95. doi: 10.1006/abbi.1993.1565. [DOI] [PubMed] [Google Scholar]
  35. Peterson C. J., Whitman V., Watson P. A., Schuler H. G., Morgan H. E. Mechanisms of differential growth of heart ventricles in newborn pigs. Circ Res. 1989 Feb;64(2):360–369. doi: 10.1161/01.res.64.2.360. [DOI] [PubMed] [Google Scholar]
  36. Poyton R. O., Trueblood C. E., Wright R. M., Farrell L. E. Expression and function of cytochrome c oxidase subunit isologues. Modulators of cellular energy production? Ann N Y Acad Sci. 1988;550:289–307. doi: 10.1111/j.1749-6632.1988.tb35344.x. [DOI] [PubMed] [Google Scholar]
  37. Rohdich F., Kadenbach B. Tissue-specific regulation of cytochrome c oxidase efficiency by nucleotides. Biochemistry. 1993 Aug 24;32(33):8499–8503. doi: 10.1021/bi00084a015. [DOI] [PubMed] [Google Scholar]
  38. Sandonà D., Gastaldello S., Rizzuto R., Bisson R. Expression of cytochrome c oxidase during growth and development of Dictyostelium. J Biol Chem. 1995 Mar 10;270(10):5587–5593. doi: 10.1074/jbc.270.10.5587. [DOI] [PubMed] [Google Scholar]
  39. Scheja K., Kadenbach B. Nucleotide sequence of cDNA encoding subunit VIII of cytochrome c oxidase from rat heart. Biochim Biophys Acta. 1992 Aug 17;1132(1):91–93. doi: 10.1016/0167-4781(92)90059-9. [DOI] [PubMed] [Google Scholar]
  40. Schlerf A., Droste M., Winter M., Kadenbach B. Characterization of two different genes (cDNA) for cytochrome c oxidase subunit VIa from heart and liver of the rat. EMBO J. 1988 Aug;7(8):2387–2391. doi: 10.1002/j.1460-2075.1988.tb03083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Smith H. E., Page E. Ultrastructural changes in rabbit heart mitochondria during the perinatal period. Neonatal transition to aerobic metabolism. Dev Biol. 1977 May;57(1):109–117. doi: 10.1016/0012-1606(77)90358-x. [DOI] [PubMed] [Google Scholar]
  42. Sordahl L. A., Crow C. A., Kraft G. H., Schwartz A. Some ultrastructural and biochemical aspects of heart mitochondria associated with development: fetal and cardiomyopathic tissue. J Mol Cell Cardiol. 1972 Feb;4(1):1–10. doi: 10.1016/0022-2828(72)90092-2. [DOI] [PubMed] [Google Scholar]
  43. Stevens R. J., Nishio M. L., Hood D. A. Effect of hypothyroidism on the expression of cytochrome c and cytochrome c oxidase in heart and muscle during development. Mol Cell Biochem. 1995 Feb 23;143(2):119–127. doi: 10.1007/BF01816945. [DOI] [PubMed] [Google Scholar]
  44. Taanman J. W., Turina P., Capaldi R. A. Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa. Biochemistry. 1994 Oct 4;33(39):11833–11841. doi: 10.1021/bi00205a020. [DOI] [PubMed] [Google Scholar]
  45. Van Beeumen J. J., Van Kuilenburg A. B., Van Bun S., Van den Bogert C., Tager J. M., Muijsers A. O. Demonstration of two isoforms of subunit VIIa of cytochrome c oxidase from human skeletal muscle. Implications for mitochondrial myopathies. FEBS Lett. 1990 Apr 24;263(2):213–216. doi: 10.1016/0014-5793(90)81376-y. [DOI] [PubMed] [Google Scholar]
  46. Van Kuilenburg A. B., Muijsers A. O., Demol H., Dekker H. L., Van Beeumen J. J. Human heart cytochrome c oxidase subunit VIII. Purification and determination of the complete amino acid sequence. FEBS Lett. 1988 Nov 21;240(1-2):127–132. doi: 10.1016/0014-5793(88)80353-3. [DOI] [PubMed] [Google Scholar]
  47. Whitsett J. A., Darovec-Beckerman C. Developmental aspects of beta-adrenergic receptors and catecholamine-sensitive adenylate cyclase in rat myocardium. Pediatr Res. 1981 Oct;15(10):1363–1369. doi: 10.1203/00006450-198110000-00013. [DOI] [PubMed] [Google Scholar]
  48. Wiesner R. J., Kurowski T. T., Zak R. Regulation by thyroid hormone of nuclear and mitochondrial genes encoding subunits of cytochrome-c oxidase in rat liver and skeletal muscle. Mol Endocrinol. 1992 Sep;6(9):1458–1467. doi: 10.1210/mend.6.9.1331777. [DOI] [PubMed] [Google Scholar]
  49. Winder W. W. Time course of the T3- and T4-induced increase in rat soleus muscle mitochondria. Am J Physiol. 1979 Mar;236(3):C132–C138. doi: 10.1152/ajpcell.1979.236.3.C132. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES