3. Calculated Triplet Energies (eV) from Regular Scalar-Relativistic (SR) and Time-Dependent (TD) Scalar- (SR) and Spin-Orbit (SO) Relativistic B3LYP* Calculations.
| SR-B3LYP* |
TD-SR-B3LYP*
|
TD-SO-B3LYP*
|
|||
|---|---|---|---|---|---|
| E T1 | E T1 | E S1 | Lowest excitation energy | f | |
| Porphyrins | |||||
| Re[Por](N) | 0.83 | 0.55 | 0.58 | 0.56 | 3.18 × 10–8 |
| Re[Por](O)(F) | 1.25 | 1.19 | 1.45 | 1.19 | 2.93 × 10–7 |
| Ir[Por](Me) | 1.64 | 1.55 | 1.77 | 1.46 | 1.02 × 10–5 |
| Pd[Por] | 1.84 | 1.79 | 2.46 | 1.79 | 1.43 × 10–8 |
| Pt[Por] | 1.93 | 1.89 | 2.35 | 1.89 | 2.35 × 10–7 |
| Corroles | |||||
| Re[Cor](O) | 1.58 | 1.54 | 2.06 | 1.54 | 6.90 × 10–8 |
| Re[Cor](S) | 0.98 | 0.98 | 1.38 | 0.99 | 5.69 × 10–7 |
| Re[Cor](Se) | 0.88 | 0.87 | 1.28 | 0.87 | 5.42 × 10–7 |
| Ru[Cor](N) | 1.50 | 1.46 | 1.82 | 1.46 | 3.63 × 10–7 |
| Os[Cor](N) | 1.56 | 1.52 | 2.28 | 1.52 | 1.60 × 10–9 |
| Ir[Cor](py)2 | 1.51 | 1.47 | 2.10 | 1.47 | 1.64 × 10–6 |
| Pt[Cor](Ph)(py) | 1.51 | 1.47 | 2.25 | 1.47 | 1.90 × 10–8 |
| Au[Cor] | 1.57 | 1.52 | 2.42 | 1.52 | 1.46 × 10–8 |
These triplet energies are adiabatic singlet–triplet gaps and were obtained from single point scalar-relativistic B3LYP* calculations on symmetry-unconstrained OLYP-D3 optimized geometries for M S = 0 and 1.
Both scalar-relativistic and spin–orbit time-dependent B3LYP* calculations were carried out on symmetry-unconstrained OLYP-D3 optimized geometries for M S = 1. The lowest excitation energies thus correspond to phosphorescence from a geometry-relaxed triplet state.
The spin–orbit relativistic oscillator strengths f are expected to be proportional to phosphorescence quantum yields.