Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1997 Dec 15;328(Pt 3):745–750. doi: 10.1042/bj3280745

Nascent very-low-density lipoprotein triacylglycerol hydrolysis by lipoprotein lipase is inhibited by apolipoprotein E in a dose-dependent manner.

M C Jong 1, V E Dahlmans 1, M H Hofker 1, L M Havekes 1
PMCID: PMC1218981  PMID: 9396715

Abstract

In the present study it was investigated whether apolipoprotein (apoE) can inhibit the lipoprotein lipase (LPL)-mediated hydrolysis of very-low-density-lipoprotein (VLDL) triacylglycerols (TAGs). Previous studies have suggested such an inhibitory role for apoE by using as a substrate for LPL either plasma VLDL or artificial TAG emulsions. To mimic the in vivo situation more fully, we decided to investigate the effect of apoE on the LPL-mediated TAG hydrolysis by using VLDL from apoE-deficient mice that had been enriched with increasing amounts of apoE. Furthermore, since plasma VLDL isolated from apoE-deficient mice was relatively poor in TAGs and strongly enriched in cholesterol as compared with VLDL from wild-type mice, we used nascent VLDL obtained by liver perfusions. Nascent VLDL (d<1. 006) isolated from the perfusate of the apoE-deficient mouse liver was rich in TAGs. Addition of increasing amounts of apoE to apoE-deficient nascent VLDL effectively decreased TAG lipolysis as compared with that of apoE-deficient nascent VLDL without the addition of apoE (63.1+/-6.3 and 20.8+/-1.8% of the control value at 2.7 microg and 29.6 microg of apoE/mg of TAG added respectively). Since, in vivo, LPL is attached to heparan sulphate proteoglycans (HSPG) at the endothelial matrix, we also performed lipolysis assays with LPL bound to HSPG in order to preserve the interaction of the lipoprotein particle with the HSPG-LPL complex. In this lipolysis system a concentration-dependent decrease in the TAG lipolysis was also observed with increasing amounts of apoE on nascent VLDL, although to a lesser extent than with LPL in solution (72.3+/-3.6% and 56.6+/-1.7% of control value at 2.7 microg and 29.6 microg of apoE/mg TAGs added respectively). In conclusion, the enrichment of the VLDL particle with apoE decreases its suitability as a substrate for LPL in a dose-dependent manner.

Full Text

The Full Text of this article is available as a PDF (205.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark A. B., Quarfordt S. H. Apolipoprotein effects on the lipolysis of perfused triglyceride by heparin-immobilized milk lipase. J Biol Chem. 1985 Apr 25;260(8):4778–4783. [PubMed] [Google Scholar]
  2. Fungwe T. V., Cagen L., Wilcox H. G., Heimberg M. Regulation of hepatic secretion of very low density lipoprotein by dietary cholesterol. J Lipid Res. 1992 Feb;33(2):179–191. [PubMed] [Google Scholar]
  3. Gómez-Coronado D., Sáez G. T., Lasunción M. A., Herrera E. Different hydrolytic efficiencies of adipose tissue lipoprotein lipase on very-low-density lipoprotein subfractions separated by heparin-Sepharose chromatography. Biochim Biophys Acta. 1993 Mar 17;1167(1):70–78. doi: 10.1016/0005-2760(93)90219-y. [DOI] [PubMed] [Google Scholar]
  4. Hultin M., Carneheim C., Rosenqvist K., Olivecrona T. Intravenous lipid emulsions: removal mechanisms as compared to chylomicrons. J Lipid Res. 1995 Oct;36(10):2174–2184. [PubMed] [Google Scholar]
  5. Ji Z. S., Fazio S., Lee Y. L., Mahley R. W. Secretion-capture role for apolipoprotein E in remnant lipoprotein metabolism involving cell surface heparan sulfate proteoglycans. J Biol Chem. 1994 Jan 28;269(4):2764–2772. [PubMed] [Google Scholar]
  6. Jong M. C., Dahlmans V. E., van Gorp P. J., Breuer M. L., Mol M. J., van der Zee A., Frants R. R., Hofker M. H., Havekes L. M. Both lipolysis and hepatic uptake of VLDL are impaired in transgenic mice coexpressing human apolipoprotein E*3Leiden and human apolipoprotein C1. Arterioscler Thromb Vasc Biol. 1996 Aug;16(8):934–940. doi: 10.1161/01.atv.16.8.934. [DOI] [PubMed] [Google Scholar]
  7. Kowal R. C., Herz J., Goldstein J. L., Esser V., Brown M. S. Low density lipoprotein receptor-related protein mediates uptake of cholesteryl esters derived from apoprotein E-enriched lipoproteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5810–5814. doi: 10.1073/pnas.86.15.5810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Lenzo N. P., Martins I., Mortimer B. C., Redgrave T. G. Effects of phospholipid composition on the metabolism of triacylglycerol, cholesteryl ester and phosphatidylcholine from lipid emulsions injected intravenously in rats. Biochim Biophys Acta. 1988 May 2;960(1):111–118. doi: 10.1016/0005-2760(88)90016-1. [DOI] [PubMed] [Google Scholar]
  10. Li H., Reddick R. L., Maeda N. Lack of apoA-I is not associated with increased susceptibility to atherosclerosis in mice. Arterioscler Thromb. 1993 Dec;13(12):1814–1821. doi: 10.1161/01.atv.13.12.1814. [DOI] [PubMed] [Google Scholar]
  11. Mahley R. W. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science. 1988 Apr 29;240(4852):622–630. doi: 10.1126/science.3283935. [DOI] [PubMed] [Google Scholar]
  12. Maranhao R. C., Tercyak A. M., Redgrave T. G. Effects of cholesterol content on the metabolism of protein-free emulsion models of lipoproteins. Biochim Biophys Acta. 1986 Feb 12;875(2):247–255. doi: 10.1016/0005-2760(86)90174-8. [DOI] [PubMed] [Google Scholar]
  13. McConathy W. J., Wang C. S. Inhibition of lipoprotein lipase by the receptor-binding domain of apolipoprotein E. FEBS Lett. 1989 Jul 17;251(1-2):250–252. doi: 10.1016/0014-5793(89)81464-4. [DOI] [PubMed] [Google Scholar]
  14. Mulder M., van der Boom H., de Knijff P., Braam C., van den Maagdenberg A., Leuven J. A., Havekes L. M. Triglyceride-rich lipoproteins of subjects heterozygous for apolipoprotein E2(Lys146-->Gln) are inefficiently converted to cholesterol-rich lipoproteins. Atherosclerosis. 1994 Aug;108(2):183–192. doi: 10.1016/0021-9150(94)90113-9. [DOI] [PubMed] [Google Scholar]
  15. Nishina P. M., Verstuyft J., Paigen B. Synthetic low and high fat diets for the study of atherosclerosis in the mouse. J Lipid Res. 1990 May;31(5):859–869. [PubMed] [Google Scholar]
  16. Redgrave T. G., Maranhao R. C. Metabolism of protein-free lipid emulsion models of chylomicrons in rats. Biochim Biophys Acta. 1985 Jun 14;835(1):104–112. doi: 10.1016/0005-2760(85)90036-0. [DOI] [PubMed] [Google Scholar]
  17. Redgrave T. G., Vassiliou G. G., Callow M. J. Cholesterol is necessary for triacylglycerol-phospholipid emulsions to mimic the metabolism of lipoproteins. Biochim Biophys Acta. 1987 Sep 4;921(1):154–157. doi: 10.1016/0005-2760(87)90182-2. [DOI] [PubMed] [Google Scholar]
  18. Rensen P. C., van Berkel T. J. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem. 1996 Jun 21;271(25):14791–14799. doi: 10.1074/jbc.271.25.14791. [DOI] [PubMed] [Google Scholar]
  19. Saxena U., Klein M. G., Goldberg I. J. Identification and characterization of the endothelial cell surface lipoprotein lipase receptor. J Biol Chem. 1991 Sep 15;266(26):17516–17521. [PubMed] [Google Scholar]
  20. Schwiegelshohn B., Presley J. F., Gorecki M., Vogel T., Carpentier Y. A., Maxfield F. R., Deckelbaum R. J. Effects of apoprotein E on intracellular metabolism of model triglyceride-rich particles are distinct from effects on cell particle uptake. J Biol Chem. 1995 Jan 27;270(4):1761–1769. doi: 10.1074/jbc.270.4.1761. [DOI] [PubMed] [Google Scholar]
  21. Shafi S., Brady S. E., Bensadoun A., Havel R. J. Role of hepatic lipase in the uptake and processing of chylomicron remnants in rat liver. J Lipid Res. 1994 Apr;35(4):709–720. [PubMed] [Google Scholar]
  22. Shimano H., Namba Y., Ohsuga J., Kawamura M., Yamamoto K., Shimada M., Gotoda T., Harada K., Yazaki Y., Yamada N. Secretion-recapture process of apolipoprotein E in hepatic uptake of chylomicron remnants in transgenic mice. J Clin Invest. 1994 May;93(5):2215–2223. doi: 10.1172/JCI117218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Suri B. S., Targ M. E., Robinson D. S. The metabolic conversion of very-low-density lipoprotein into low-density lipoprotein by the extrahepatic tissues of the rat. Biochem J. 1979 Feb 15;178(2):455–466. doi: 10.1042/bj1780455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takahashi S., Suzuki J., Kohno M., Oida K., Tamai T., Miyabo S., Yamamoto T., Nakai T. Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. J Biol Chem. 1995 Jun 30;270(26):15747–15754. doi: 10.1074/jbc.270.26.15747. [DOI] [PubMed] [Google Scholar]
  25. Williamson R., Lee D., Hagaman J., Maeda N. Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7134–7138. doi: 10.1073/pnas.89.15.7134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Ree J. H., van den Broek W. J., Dahlmans V. E., Groot P. H., Vidgeon-Hart M., Frants R. R., Wieringa B., Havekes L. M., Hofker M. H. Diet-induced hypercholesterolemia and atherosclerosis in heterozygous apolipoprotein E-deficient mice. Atherosclerosis. 1994 Nov;111(1):25–37. doi: 10.1016/0021-9150(94)90188-0. [DOI] [PubMed] [Google Scholar]
  27. van Vlijmen B. J., van Dijk K. W., van't Hof H. B., van Gorp P. J., van der Zee A., van der Boom H., Breuer M. L., Hofker M. H., Havekes L. M. In the absence of endogenous mouse apolipoprotein E, apolipoprotein E*2(Arg-158 --> Cys) transgenic mice develop more severe hyperlipoproteinemia than apolipoprotein E*3-Leiden transgenic mice. J Biol Chem. 1996 Nov 29;271(48):30595–30602. doi: 10.1074/jbc.271.48.30595. [DOI] [PubMed] [Google Scholar]
  28. van Vlijmen B. J., van den Maagdenberg A. M., Gijbels M. J., van der Boom H., HogenEsch H., Frants R. R., Hofker M. H., Havekes L. M. Diet-induced hyperlipoproteinemia and atherosclerosis in apolipoprotein E3-Leiden transgenic mice. J Clin Invest. 1994 Apr;93(4):1403–1410. doi: 10.1172/JCI117117. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES