Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Feb 15;330(Pt 1):131–138. doi: 10.1042/bj3300131

Comparison of human red cell lysis by hypochlorous and hypobromous acids: insights into the mechanism of lysis.

M C Vissers 1, A C Carr 1, A L Chapman 1
PMCID: PMC1219118  PMID: 9461501

Abstract

Human red blood cells are lysed by the neutrophil-derived oxidant hypochlorous acid (HOCl), although the mechanism of lysis is unknown. Hypobromous acid (HOBr), a similarly reactive oxidant, lysed red cells approx. 10-fold faster than HOCl. Therefore we compared the effects of these oxidants on thiols, membrane lipids and proteins to determine which reactions are associated with lysis. There was no difference in the loss of reduced glutathione or membrane thiols with either oxidant, but HOBr reacted more readily with membrane lipids and proteins. Bromohydrin derivatives of phospholipids and cholesterol were seen at approx. one-tenth the level of oxidant than chlorohydrins were. However, these products were detected only with high concentrations of HOCl or HOBr, which caused instant haemolysis. Membrane protein modification occurred at much lower doses of oxidant and was more closely correlated with lysis. SDS/PAGE analysis showed that band 3, the anion transport protein, was lost at the lowest dose of HOBr and at the higher concentrations of HOCl. Labelling the red cells with eosin 5-maleimide, a fluorescent label for band 3, suggested possible clustering of this protein in oxidant-exposed cells. There was also irreversible cross-linking of all the major membrane proteins; this reaction occurred more readily with HOBr. The results indicate that membrane protein modification is the reaction responsible for HOCl-mediated lysis. These effects, and particularly cross-link formation, might result in clustering of band 3 and other membrane and cytoskeletal proteins to form haemolytic pores.

Full Text

The Full Text of this article is available as a PDF (484.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernofsky C. Nucleotide chloramines and neutrophil-mediated cytotoxicity. FASEB J. 1991 Mar 1;5(3):295–300. doi: 10.1096/fasebj.5.3.1848195. [DOI] [PubMed] [Google Scholar]
  2. Carr A. C., Winterbourn C. C., van den Berg J. J. Peroxidase-mediated bromination of unsaturated fatty acids to form bromohydrins. Arch Biochem Biophys. 1996 Mar 15;327(2):227–233. doi: 10.1006/abbi.1996.0114. [DOI] [PubMed] [Google Scholar]
  3. Carr A. C., van den Berg J. J., Winterbourn C. C. Chlorination of cholesterol in cell membranes by hypochlorous acid. Arch Biochem Biophys. 1996 Aug 1;332(1):63–69. doi: 10.1006/abbi.1996.0317. [DOI] [PubMed] [Google Scholar]
  4. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  5. Dallegri F., Ballestrero A., Frumento G., Patrone F. Erythrocyte lysis by PMA-triggered neutrophil polymorphonuclears: evidence for an hypochlorous acid-dependent process. Immunology. 1985 Aug;55(4):639–645. [PMC free article] [PubMed] [Google Scholar]
  6. Dallegri F., Goretti R., Ballestrero A., Ottonello L., Patrone F. Neutrophil-induced depletion of adenosine triphosphate in target cells: evidence for a hypochlorous acid-mediated process. J Lab Clin Med. 1988 Dec;112(6):765–772. [PubMed] [Google Scholar]
  7. Dallegri F., Patrone F., Ballestrero A., Frumento G., Sacchetti C. Inhibition of neutrophil cytolysin production by target cells. Blood. 1986 May;67(5):1265–1272. [PubMed] [Google Scholar]
  8. De Goeij A. F., Ververgaert P. H., Steveninck J. V. Photodynamic effects of protoporphyrin on the architecture of erythrocyte membranes in protoporphyria and in normal red blood cells. Clin Chim Acta. 1975 Jul 23;62(2):287–292. doi: 10.1016/0009-8981(75)90238-7. [DOI] [PubMed] [Google Scholar]
  9. De Goeij A. F., van Straalen R. J., van Steveninck J. Photodynamic modification of proteins in human red blood cell membranes, induced by protoporphyrin. Clin Chim Acta. 1976 Sep 20;71(3):485–494. doi: 10.1016/0009-8981(76)90100-5. [DOI] [PubMed] [Google Scholar]
  10. Eley D. W., Eley J. M., Korecky B., Fliss H. Impairment of cardiac contractility and sarcoplasmic reticulum Ca2+ ATPase activity by hypochlorous acid: reversal by dithiothreitol. Can J Physiol Pharmacol. 1991 Nov;69(11):1677–1685. doi: 10.1139/y91-249. [DOI] [PubMed] [Google Scholar]
  11. FANELLI A. R., ANTONINI E., CAPUTO A. Studies on the structure of hemoglobin. I. Physicochemical properties of human globin. Biochim Biophys Acta. 1958 Dec;30(3):608–615. doi: 10.1016/0006-3002(58)90108-2. [DOI] [PubMed] [Google Scholar]
  12. Fliss H., Ménard M. Hypochlorous acid-induced mobilization of zinc from metalloproteins. Arch Biochem Biophys. 1991 May 15;287(1):175–179. doi: 10.1016/0003-9861(91)90403-6. [DOI] [PubMed] [Google Scholar]
  13. Hazell L. J., van den Berg J. J., Stocker R. Oxidation of low-density lipoprotein by hypochlorite causes aggregation that is mediated by modification of lysine residues rather than lipid oxidation. Biochem J. 1994 Aug 15;302(Pt 1):297–304. doi: 10.1042/bj3020297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jasin H. E. Oxidative cross-linking of immune complexes by human polymorphonuclear leukocytes. J Clin Invest. 1988 Jan;81(1):6–15. doi: 10.1172/JCI113310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kanofsky J. R., Hoogland H., Wever R., Weiss S. J. Singlet oxygen production by human eosinophils. J Biol Chem. 1988 Jul 15;263(20):9692–9696. [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Low P. S. Structure and function of the cytoplasmic domain of band 3: center of erythrocyte membrane-peripheral protein interactions. Biochim Biophys Acta. 1986 Sep 22;864(2):145–167. doi: 10.1016/0304-4157(86)90009-2. [DOI] [PubMed] [Google Scholar]
  18. Mayeno A. N., Curran A. J., Roberts R. L., Foote C. S. Eosinophils preferentially use bromide to generate halogenating agents. J Biol Chem. 1989 Apr 5;264(10):5660–5668. [PubMed] [Google Scholar]
  19. Rosen H., Klebanoff S. J. Oxidation of microbial iron-sulfur centers by the myeloperoxidase-H2O2-halide antimicrobial system. Infect Immun. 1985 Mar;47(3):613–618. doi: 10.1128/iai.47.3.613-618.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sato Y., Kamo S., Takahashi T., Suzuki Y. Mechanism of free radical-induced hemolysis of human erythrocytes: hemolysis by water-soluble radical initiator. Biochemistry. 1995 Jul 18;34(28):8940–8949. doi: 10.1021/bi00028a002. [DOI] [PubMed] [Google Scholar]
  21. Schraufstätter I. U., Browne K., Harris A., Hyslop P. A., Jackson J. H., Quehenberger O., Cochrane C. G. Mechanisms of hypochlorite injury of target cells. J Clin Invest. 1990 Feb;85(2):554–562. doi: 10.1172/JCI114472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Slungaard A., Mahoney J. R., Jr Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids. Implications for cytotoxicity. J Biol Chem. 1991 Mar 15;266(8):4903–4910. [PubMed] [Google Scholar]
  23. Snyder L. M., Fortier N. L., Trainor J., Jacobs J., Leb L., Lubin B., Chiu D., Shohet S., Mohandas N. Effect of hydrogen peroxide exposure on normal human erythrocyte deformability, morphology, surface characteristics, and spectrin-hemoglobin cross-linking. J Clin Invest. 1985 Nov;76(5):1971–1977. doi: 10.1172/JCI112196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sugihara T., Rawicz W., Evans E. A., Hebbel R. P. Lipid hydroperoxides permit deformation-dependent leak of monovalent cation from erythrocytes. Blood. 1991 Jun 15;77(12):2757–2763. [PubMed] [Google Scholar]
  25. Tatsumi T., Fliss H. Hypochlorous acid and chloramines increase endothelial permeability: possible involvement of cellular zinc. Am J Physiol. 1994 Oct;267(4 Pt 2):H1597–H1607. doi: 10.1152/ajpheart.1994.267.4.H1597. [DOI] [PubMed] [Google Scholar]
  26. Thomas E. L., Bozeman P. M., Jefferson M. M., King C. C. Oxidation of bromide by the human leukocyte enzymes myeloperoxidase and eosinophil peroxidase. Formation of bromamines. J Biol Chem. 1995 Feb 17;270(7):2906–2913. doi: 10.1074/jbc.270.7.2906. [DOI] [PubMed] [Google Scholar]
  27. Verweij H., Dubbelman T. M., Van Steveninck J. Photodynamic protein cross-linking. Biochim Biophys Acta. 1981 Sep 21;647(1):87–94. doi: 10.1016/0005-2736(81)90297-2. [DOI] [PubMed] [Google Scholar]
  28. Vissers M. C., Fantone J. C. Inhibition of hypochlorous acid-mediated reactions by desferrioxamine. Implications for the mechanism of cellular injury by neutrophils. Free Radic Biol Med. 1990;8(4):331–337. doi: 10.1016/0891-5849(90)90098-4. [DOI] [PubMed] [Google Scholar]
  29. Vissers M. C., Stern A., Kuypers F., van den Berg J., Winterbourn C. C. Membrane changes associated with lysis of red blood cells by hypochlorous acid. Free Radic Biol Med. 1994 Jun;16(6):703–712. doi: 10.1016/0891-5849(94)90185-6. [DOI] [PubMed] [Google Scholar]
  30. Vissers M. C., Winterbourn C. C. Oxidation of intracellular glutathione after exposure of human red blood cells to hypochlorous acid. Biochem J. 1995 Apr 1;307(Pt 1):57–62. doi: 10.1042/bj3070057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vissers M. C., Winterbourn C. C. Oxidative damage to fibronectin. I. The effects of the neutrophil myeloperoxidase system and HOCl. Arch Biochem Biophys. 1991 Feb 15;285(1):53–59. doi: 10.1016/0003-9861(91)90327-f. [DOI] [PubMed] [Google Scholar]
  32. Weiss S. J. Neutrophil-mediated methemoglobin formation in the erythrocyte. The role of superoxide and hydrogen peroxide. J Biol Chem. 1982 Mar 25;257(6):2947–2953. [PubMed] [Google Scholar]
  33. Weiss S. J., Slivka A. Monocyte and granulocyte-mediated tumor cell destruction. A role for the hydrogen peroxide-myeloperoxidase-chloride system. J Clin Invest. 1982 Feb;69(2):255–262. doi: 10.1172/JCI110447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Winterbourn C. C. Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta. 1985 Jun 18;840(2):204–210. doi: 10.1016/0304-4165(85)90120-5. [DOI] [PubMed] [Google Scholar]
  35. Winterbourn C. C., van den Berg J. J., Roitman E., Kuypers F. A. Chlorohydrin formation from unsaturated fatty acids reacted with hypochlorous acid. Arch Biochem Biophys. 1992 Aug 1;296(2):547–555. doi: 10.1016/0003-9861(92)90609-z. [DOI] [PubMed] [Google Scholar]
  36. van Dalen C. J., Whitehouse M. W., Winterbourn C. C., Kettle A. J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J. 1997 Oct 15;327(Pt 2):487–492. doi: 10.1042/bj3270487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. van den Berg J. J., Winterbourn C. C., Kuypers F. A. Hypochlorous acid-mediated modification of cholesterol and phospholipid: analysis of reaction products by gas chromatography-mass spectrometry. J Lipid Res. 1993 Nov;34(11):2005–2012. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES