Abstract
Cross-talk between the phospholipase C and adenylyl cyclase signalling pathways was investigated in Chinese hamster ovary (CHO) cells transfected with the V1a and V2 vasopressin receptors. Cell lines expressing V1a, V2, or both V1a and V2 receptors, were established and characterized. Stimulation of V2 receptors by vasopressin induced a dose-dependent increase in cAMP accumulation, whereas stimulation of V1a receptor resulted in an increase in intracellular calcium without any change in basal cAMP. The simultaneous stimulation of V2 and V1a receptors by vasopressin elicited an intracellular cAMP accumulation which was twice that induced by stimulation of V2 receptor alone with deamino-[d-Arg8]vasopressin. This potentiation between V1a and V2 receptors was mimicked by activation of protein kinase C (PKC) with PMA, and was suppressed when PKC activity was inhibited by bisindolylmaleimide. The potentiation was observed in the presence or absence of 1 mM 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, implying that an alteration in cAMP hydrolysis was not involved. Vasopressin, as well as PMA, had no effect on the forskolin-induced cAMP accumulation, suggesting that PKC did not directly stimulate the cyclase activity. On the other hand, vasopressin, like PMA, potentiated the cAMP accumulation induced by cholera toxin, an activator of Galphas protein. These results suggest that, in CHO cells, vasopressin V1a receptor potentiates the cAMP accumulation induced by the V2 receptor through a PKC-dependent increase in the coupling between Gs protein and adenylyl cyclase.
Full Text
The Full Text of this article is available as a PDF (343.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abou-Samra A. B., Jüppner H., Force T., Freeman M. W., Kong X. F., Schipani E., Urena P., Richards J., Bonventre J. V., Potts J. T., Jr Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2732–2736. doi: 10.1073/pnas.89.7.2732. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ball R. L., Tanner K. D., Carpenter G. Epidermal growth factor potentiates cyclic AMP accumulation in A-431 cells. J Biol Chem. 1990 Aug 5;265(22):12836–12845. [PubMed] [Google Scholar]
- Beavo J. A. Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms. Physiol Rev. 1995 Oct;75(4):725–748. doi: 10.1152/physrev.1995.75.4.725. [DOI] [PubMed] [Google Scholar]
- Boarder M. R., Plevin R., Marriott D. B. Angiotensin II potentiates prostaglandin stimulation of cyclic AMP levels in intact bovine adrenal medulla cells but not adenylate cyclase in permeabilized cells. J Biol Chem. 1988 Oct 25;263(30):15319–15324. [PubMed] [Google Scholar]
- Burgess G. M., Bird G. S., Obie J. F., Putney J. W., Jr The mechanism for synergism between phospholipase C- and adenylylcyclase-linked hormones in liver. Cyclic AMP-dependent kinase augments inositol trisphosphate-mediated Ca2+ mobilization without increasing the cellular levels of inositol polyphosphates. J Biol Chem. 1991 Mar 15;266(8):4772–4781. [PubMed] [Google Scholar]
- Bushfield M., Murphy G. J., Lavan B. E., Parker P. J., Hruby V. J., Milligan G., Houslay M. D. Hormonal regulation of Gi2 alpha-subunit phosphorylation in intact hepatocytes. Biochem J. 1990 Jun 1;268(2):449–457. doi: 10.1042/bj2680449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bygrave F. L., Roberts H. R. Regulation of cellular calcium through signaling cross-talk involves an intricate interplay between the actions of receptors, G-proteins, and second messengers. FASEB J. 1995 Oct;9(13):1297–1303. doi: 10.1096/fasebj.9.13.7557019. [DOI] [PubMed] [Google Scholar]
- Choi E. J., Toscano W. A., Jr Modulation of adenylate cyclase in human keratinocytes by protein kinase C. J Biol Chem. 1988 Nov 15;263(32):17167–17172. [PubMed] [Google Scholar]
- Conti M., Nemoz G., Sette C., Vicini E. Recent progress in understanding the hormonal regulation of phosphodiesterases. Endocr Rev. 1995 Jun;16(3):370–389. doi: 10.1210/edrv-16-3-370. [DOI] [PubMed] [Google Scholar]
- Daly J. W. Forskolin, adenylate cyclase, and cell physiology: an overview. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:81–89. [PubMed] [Google Scholar]
- Daly J. W., Padgett W., Seamon K. B. Activation of cyclic AMP-generating systems in brain membranes and slices by the diterpene forskolin: augmentation of receptor-mediated responses. J Neurochem. 1982 Feb;38(2):532–544. doi: 10.1111/j.1471-4159.1982.tb08660.x. [DOI] [PubMed] [Google Scholar]
- Dasso L. L., Taylor C. W. Interactions between Ca(2+)-mobilizing receptors and their G proteins in hepatocytes. J Biol Chem. 1994 Mar 25;269(12):8647–8652. [PubMed] [Google Scholar]
- Debernardi M. A., Munshi R., Brooker G. Ca2+ inhibition of beta-adrenergic receptor- and forskolin-stimulated cAMP accumulation in C6-2B rat glioma cells is independent of protein kinase C. Mol Pharmacol. 1993 Mar;43(3):451–458. [PubMed] [Google Scholar]
- Firsov D., Mandon B., Morel A., Merot J., Le Maout S., Bellanger A. C., de Rouffignac C., Elalouf J. M., Buhler J. M. Molecular analysis of vasopressin receptors in the rat nephron. Evidence for alternative splicing of the V2 receptor. Pflugers Arch. 1994 Nov;429(1):79–89. doi: 10.1007/BF02584033. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Irvine F., Pyne N. J., Houslay M. D. The phorbol ester TPA inhibits cyclic AMP phosphodiesterase activity in intact hepatocytes. FEBS Lett. 1986 Nov 24;208(2):455–459. doi: 10.1016/0014-5793(86)81068-7. [DOI] [PubMed] [Google Scholar]
- Jacobowitz O., Chen J., Premont R. T., Iyengar R. Stimulation of specific types of Gs-stimulated adenylyl cyclases by phorbol ester treatment. J Biol Chem. 1993 Feb 25;268(6):3829–3832. [PubMed] [Google Scholar]
- Jacobowitz O., Iyengar R. Phorbol ester-induced stimulation and phosphorylation of adenylyl cyclase 2. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10630–10634. doi: 10.1073/pnas.91.22.10630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jelinek L. J., Lok S., Rosenberg G. B., Smith R. A., Grant F. J., Biggs S., Bensch P. A., Kuijper J. L., Sheppard P. O., Sprecher C. A. Expression cloning and signaling properties of the rat glucagon receptor. Science. 1993 Mar 12;259(5101):1614–1616. doi: 10.1126/science.8384375. [DOI] [PubMed] [Google Scholar]
- Katada T., Gilman A. G., Watanabe Y., Bauer S., Jakobs K. H. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase. Eur J Biochem. 1985 Sep 2;151(2):431–437. doi: 10.1111/j.1432-1033.1985.tb09120.x. [DOI] [PubMed] [Google Scholar]
- Kawabe J. i., Ebina T., Toya Y., Oka N., Schwencke C., Duzic E., Ishikawa Y. Regulation of type V adenylyl cyclase by PMA-sensitive and -insensitive protein kinase C isoenzymes in intact cells. FEBS Lett. 1996 Apr 22;384(3):273–276. doi: 10.1016/0014-5793(96)00331-6. [DOI] [PubMed] [Google Scholar]
- Kawabe J., Iwami G., Ebina T., Ohno S., Katada T., Ueda Y., Homcy C. J., Ishikawa Y. Differential activation of adenylyl cyclase by protein kinase C isoenzymes. J Biol Chem. 1994 Jun 17;269(24):16554–16558. [PubMed] [Google Scholar]
- Le Goas F., Amiel C., Friedlander G. Protein kinase C modulates cAMP content in proximal tubular cells: role of phosphodiesterase inhibition. Am J Physiol. 1991 Oct;261(4 Pt 2):F587–F592. doi: 10.1152/ajprenal.1991.261.4.F587. [DOI] [PubMed] [Google Scholar]
- Liu B., Nakashima S., Takano T., Shimizu T., Nozawa Y. Implication of protein kinase C alpha in PAF-stimulated phospholipase D activation in Chinese hamster ovary (CHO) cells expressing PAF receptor. Biochem Biophys Res Commun. 1995 Sep 14;214(2):418–423. doi: 10.1006/bbrc.1995.2303. [DOI] [PubMed] [Google Scholar]
- Lolait S. J., O'Carroll A. M., Brownstein M. J. Molecular biology of vasopressin receptors. Ann N Y Acad Sci. 1995 Dec 29;771:273–292. doi: 10.1111/j.1749-6632.1995.tb44688.x. [DOI] [PubMed] [Google Scholar]
- Lolait S. J., O'Carroll A. M., McBride O. W., Konig M., Morel A., Brownstein M. J. Cloning and characterization of a vasopressin V2 receptor and possible link to nephrogenic diabetes insipidus. Nature. 1992 May 28;357(6376):336–339. doi: 10.1038/357336a0. [DOI] [PubMed] [Google Scholar]
- Morel A., O'Carroll A. M., Brownstein M. J., Lolait S. J. Molecular cloning and expression of a rat V1a arginine vasopressin receptor. Nature. 1992 Apr 9;356(6369):523–526. doi: 10.1038/356523a0. [DOI] [PubMed] [Google Scholar]
- Morimoto B. H., Koshland D. E., Jr Conditional activation of cAMP signal transduction by protein kinase C. The effect of phorbol esters on adenylyl cyclase in permeabilized and intact cells. J Biol Chem. 1994 Feb 11;269(6):4065–4069. [PubMed] [Google Scholar]
- Morris N. J., Bushfield M., Lavan B. E., Houslay M. D. Multi-site phosphorylation of the inhibitory guanine nucleotide regulatory protein Gi-2 occurs in intact rat hepatocytes. Biochem J. 1994 Aug 1;301(Pt 3):693–702. doi: 10.1042/bj3010693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naghshineh S., Noguchi M., Huang K. P., Londos C. Activation of adipocyte adenylate cyclase by protein kinase C. J Biol Chem. 1986 Nov 5;261(31):14534–14538. [PubMed] [Google Scholar]
- Pradelles P., Grassi J., Chabardes D., Guiso N. Enzyme immunoassays of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate using acetylcholinesterase. Anal Chem. 1989 Mar 1;61(5):447–453. doi: 10.1021/ac00180a014. [DOI] [PubMed] [Google Scholar]
- Raymond J. R. Multiple mechanisms of receptor-G protein signaling specificity. Am J Physiol. 1995 Aug;269(2 Pt 2):F141–F158. doi: 10.1152/ajprenal.1995.269.2.F141. [DOI] [PubMed] [Google Scholar]
- Serradeil-Le Gal C., Wagnon J., Garcia C., Lacour C., Guiraudou P., Christophe B., Villanova G., Nisato D., Maffrand J. P., Le Fur G. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest. 1993 Jul;92(1):224–231. doi: 10.1172/JCI116554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simmoteit R., Schulzki H. D., Palm D., Mollner S., Pfeuffer T. Chemical and functional analysis of components of adenylyl cyclase from human platelets treated with phorbolesters. FEBS Lett. 1991 Jul 8;285(1):99–103. doi: 10.1016/0014-5793(91)80734-k. [DOI] [PubMed] [Google Scholar]
- Sutkowski E. M., Tang W. J., Broome C. W., Robbins J. D., Seamon K. B. Regulation of forskolin interactions with type I, II, V, and VI adenylyl cyclases by Gs alpha. Biochemistry. 1994 Nov 1;33(43):12852–12859. doi: 10.1021/bi00209a017. [DOI] [PubMed] [Google Scholar]
- Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
- Wiener E., Scarpa A. Activation of protein kinase C modulates the adenylate cyclase effector system of B-lymphocytes. J Biol Chem. 1989 Mar 15;264(8):4324–4328. [PubMed] [Google Scholar]
- Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
- Yoshimura M., Cooper D. M. Type-specific stimulation of adenylylcyclase by protein kinase C. J Biol Chem. 1993 Mar 5;268(7):4604–4607. [PubMed] [Google Scholar]
- Yu H., Cai J. J., Lee H. C. Cyclic AMP-dependent phosphodiesterase isozyme-specific potentiation by protein kinase C in hypertrophic cardiomyopathic hamster hearts. Mol Pharmacol. 1996 Sep;50(3):549–555. [PubMed] [Google Scholar]