Abstract
Thrombin interaction with platelet glycocalicin (GC), the 140 kDa extracytoplasmic fragment of the membrane glycoprotein Ib, was investigated by using a solid-phase assay. Thrombin bound to GC-coated polystyrene wells was detected by measuring the hydrolysis of a chromogenic substrate. The monoclonal antibody LJ-Ib10, which specifically binds to the thrombin-binding site of GC, could displace thrombin from immobilized GC, whereas the monoclonal antibody LJ-Ib1, which interacts with the von Willebrand factor-binding domain of GC, did not affect thrombin binding to GC. Competitive inhibition of thrombin binding to immobilized GC was also observed using GC in solution or ligands that bind to the thrombin heparin-binding site, such as heparin and prothrombin fragment 2. Furthermore functional experiments demonstrated that GC binding to thrombin competes with heparin for thrombin inactivation by the antithrombin III-heparin complex as well. Thrombin-GC interaction was also studied as a function of temperature over the range 4-37 degreesC. A large negative heat capacity change (DeltaCp), of -4.14+/-0.8 kJ.mol-1.K-1, was demonstrated to dominate the thermodynamics of thrombin-GC complex-formation. Finally it was demonstrated that GC binding to thrombin can allosterically decrease the enzyme affinity for hirudin via a simultaneous decrease in association rate and increase in the dissociation velocity of the enzyme-inhibitor adduct. Together these observations indicate the GC binding to the heparin-binding domain of thrombin is largely driven by a hydrophobic effect and that such interaction can protect the enzyme from inhibition by the heparin-anti-thrombin III complex.
Full Text
The Full Text of this article is available as a PDF (530.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arni R. K., Padmanabhan K., Padmanabhan K. P., Wu T. P., Tulinsky A. Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin. Biochemistry. 1993 May 11;32(18):4727–4737. doi: 10.1021/bi00069a006. [DOI] [PubMed] [Google Scholar]
- Bouton M. C., Jandrot-Perrus M., Moog S., Cazenave J. P., Guillin M. C., Lanza F. Thrombin interaction with a recombinant N-terminal extracellular domain of the thrombin receptor in an acellular system. Biochem J. 1995 Jan 15;305(Pt 2):635–641. doi: 10.1042/bj3050635. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buchanan S. G., Gay N. J. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Mol Biol. 1996;65(1-2):1–44. doi: 10.1016/s0079-6107(96)00003-x. [DOI] [PubMed] [Google Scholar]
- Cha S. Tight-binding inhibitors--III. A new approach for the determination of competition between tight-binding inhibitors and substrates--inhibition of adenosine deaminase by coformycin. Biochem Pharmacol. 1976 Dec 15;25(24):2695–2702. doi: 10.1016/0006-2952(76)90259-8. [DOI] [PubMed] [Google Scholar]
- Clemetson K. J., Clemetson J. M. Platelet GPIb-V-IX complex. Structure, function, physiology, and pathology. Semin Thromb Hemost. 1995;21(2):130–136. doi: 10.1055/s-2007-1000387. [DOI] [PubMed] [Google Scholar]
- Connolly A. J., Ishihara H., Kahn M. L., Farese R. V., Jr, Coughlin S. R. Role of the thrombin receptor in development and evidence for a second receptor. Nature. 1996 Jun 6;381(6582):516–519. doi: 10.1038/381516a0. [DOI] [PubMed] [Google Scholar]
- De Candia E., De Cristofaro R., De Marco L., Mazzucato M., Picozzi M., Landolfi R. Thrombin interaction with platelet GpIB: role of the heparin binding domain. Thromb Haemost. 1997 Apr;77(4):735–740. [PubMed] [Google Scholar]
- De Marco L., Mazzucato M., Masotti A., Ruggeri Z. M. Localization and characterization of an alpha-thrombin-binding site on platelet glycoprotein Ib alpha. J Biol Chem. 1994 Mar 4;269(9):6478–6484. [PubMed] [Google Scholar]
- Dong J. F., Li C. Q., López J. A. Tyrosine sulfation of the glycoprotein Ib-IX complex: identification of sulfated residues and effect on ligand binding. Biochemistry. 1994 Nov 22;33(46):13946–13953. doi: 10.1021/bi00250a050. [DOI] [PubMed] [Google Scholar]
- Fox J. E., Aggerbeck L. P., Berndt M. C. Structure of the glycoprotein Ib.IX complex from platelet membranes. J Biol Chem. 1988 Apr 5;263(10):4882–4890. [PubMed] [Google Scholar]
- Gan Z. R., Li Y., Chen Z., Lewis S. D., Shafer J. A. Identification of basic amino acid residues in thrombin essential for heparin-catalyzed inactivation by antithrombin III. J Biol Chem. 1994 Jan 14;269(2):1301–1305. [PubMed] [Google Scholar]
- Gralnick H. R., Williams S., McKeown L. P., Hansmann K., Fenton J. W., 2nd, Krutzsch H. High-affinity alpha-thrombin binding to platelet glycoprotein Ib alpha: identification of two binding domains. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6334–6338. doi: 10.1073/pnas.91.14.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greco N. J., Jones G. D., Tandon N. N., Kornhauser R., Jackson B., Jamieson G. A. Differentiation of the two forms of GPIb functioning as receptors for alpha-thrombin and von Willebrand factor: Ca2+ responses of protease-treated human platelets activated with alpha-thrombin and the tethered ligand peptide. Biochemistry. 1996 Jan 23;35(3):915–921. doi: 10.1021/bi951504q. [DOI] [PubMed] [Google Scholar]
- Greco N. J., Tandon N. N., Jones G. D., Kornhauser R., Jackson B., Yamamoto N., Tanoue K., Jamieson G. A. Contributions of glycoprotein Ib and the seven transmembrane domain receptor to increases in platelet cytoplasmic [Ca2+] induced by alpha-thrombin. Biochemistry. 1996 Jan 23;35(3):906–914. doi: 10.1021/bi951503y. [DOI] [PubMed] [Google Scholar]
- Handa M., Titani K., Holland L. Z., Roberts J. R., Ruggeri Z. M. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. J Biol Chem. 1986 Sep 25;261(27):12579–12585. [PubMed] [Google Scholar]
- Harmon J. T., Jamieson G. A. Activation of platelets by alpha-thrombin is a receptor-mediated event. D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone-thrombin, but not N alpha-tosyl-L-lysine chloromethyl ketone-thrombin, binds to the high affinity thrombin receptor. J Biol Chem. 1986 Dec 5;261(34):15928–15933. [PubMed] [Google Scholar]
- Hess D., Schaller J., Rickli E. E., Clemetson K. J. Identification of the disulphide bonds in human platelet glycocalicin. Eur J Biochem. 1991 Jul 15;199(2):389–393. doi: 10.1111/j.1432-1033.1991.tb16135.x. [DOI] [PubMed] [Google Scholar]
- Hogg P. J., Jackson C. M. Fibrin monomer protects thrombin from inactivation by heparin-antithrombin III: implications for heparin efficacy. Proc Natl Acad Sci U S A. 1989 May;86(10):3619–3623. doi: 10.1073/pnas.86.10.3619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishihara H., Connolly A. J., Zeng D., Kahn M. L., Zheng Y. W., Timmons C., Tram T., Coughlin S. R. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature. 1997 Apr 3;386(6624):502–506. doi: 10.1038/386502a0. [DOI] [PubMed] [Google Scholar]
- Marchese P., Murata M., Mazzucato M., Pradella P., De Marco L., Ware J., Ruggeri Z. M. Identification of three tyrosine residues of glycoprotein Ib alpha with distinct roles in von Willebrand factor and alpha-thrombin binding. J Biol Chem. 1995 Apr 21;270(16):9571–9578. doi: 10.1074/jbc.270.16.9571. [DOI] [PubMed] [Google Scholar]
- Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
- Nordenman B., Björk I. Binding of low-affinity and high-affinity heparin to antithrombin. Ultraviolet difference spectroscopy and circular dichroism studies. Biochemistry. 1978 Aug 8;17(16):3339–3344. doi: 10.1021/bi00609a026. [DOI] [PubMed] [Google Scholar]
- Nordenman B., Nyström C., Björk I. The size and shape of human and bovine antithrombin III. Eur J Biochem. 1977 Aug 15;78(1):195–203. doi: 10.1111/j.1432-1033.1977.tb11730.x. [DOI] [PubMed] [Google Scholar]
- Olson S. T., Björk I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem. 1991 Apr 5;266(10):6353–6364. [PubMed] [Google Scholar]
- Olson S. T., Björk I., Shore J. D. Kinetic characterization of heparin-catalyzed and uncatalyzed inhibition of blood coagulation proteinases by antithrombin. Methods Enzymol. 1993;222:525–559. doi: 10.1016/0076-6879(93)22033-c. [DOI] [PubMed] [Google Scholar]
- Olson S. T., Halvorson H. R., Björk I. Quantitative characterization of the thrombin-heparin interaction. Discrimination between specific and nonspecific binding models. J Biol Chem. 1991 Apr 5;266(10):6342–6352. [PubMed] [Google Scholar]
- Olson S. T., Shore J. D. Binding of high affinity heparin to antithrombin III. Characterization of the protein fluorescence enhancement. J Biol Chem. 1981 Nov 10;256(21):11065–11072. [PubMed] [Google Scholar]
- Pace C. N., Vajdos F., Fee L., Grimsley G., Gray T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 1995 Nov;4(11):2411–2423. doi: 10.1002/pro.5560041120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips D. R., Agin P. P. Platelet plasma membrane glycoproteins. Evidence for the presence of nonequivalent disulfide bonds using nonreduced-reduced two-dimensional gel electrophoresis. J Biol Chem. 1977 Mar 25;252(6):2121–2126. [PubMed] [Google Scholar]
- Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
- Spolar R. S., Livingstone J. R., Record M. T., Jr Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry. 1992 Apr 28;31(16):3947–3955. doi: 10.1021/bi00131a009. [DOI] [PubMed] [Google Scholar]
- Stone S. R., Hofsteenge J. Effect of heparin on the interaction between thrombin and hirudin. Eur J Biochem. 1987 Dec 1;169(2):373–376. doi: 10.1111/j.1432-1033.1987.tb13622.x. [DOI] [PubMed] [Google Scholar]
- Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
- Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
- de Cristofaro R., Rocca B., Bizzi B., Landolfi R. The linkage between binding of the C-terminal domain of hirudin and amidase activity in human alpha-thrombin. Biochem J. 1993 Jan 15;289(Pt 2):475–480. doi: 10.1042/bj2890475. [DOI] [PMC free article] [PubMed] [Google Scholar]