Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1998 Aug 1;333(Pt 3):549–554. doi: 10.1042/bj3330549

Discrimination of two amino acid transport activities in 4F2 heavy chain- expressing Xenopus laevis oocytes.

A Bröer 1, B Hamprecht 1, S Bröer 1
PMCID: PMC1219616  PMID: 9677312

Abstract

Expression of the type II membrane proteins of the rbAT/4F2hc family in Xenopus laevis oocytes results in the induction of amino acid transport activity. To elucidate the mechanism of action, amino acid transport was investigated in oocytes expressing the surface antigen 4F2hc. Leucine transport was mediated by a Na+-independent and a Na+-dependent transport mechanism. Both systems could be further discriminated by their stereochemical constraints. Isoleucine, with a branch at the beta-position, shared only the Na+-independent transport system with leucine. Both transport systems were sensitive to inhibition by arginine, but only the Na+-independent system was sensitive to inhibition by 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. When compared with known transport systems the two transport activities could be described as similar to, but not identical with, mammalian systems b0,+ and y+L. The Na+-independent b0,+-like transport system was found both in rbAT and 4F2hc expressing oocytes, indicating that both proteins act in a similar way.

Full Text

The Full Text of this article is available as a PDF (392.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A., Yao P. C., Brant A. M., Peter G. J., Harper A. A. Electrogenic L-histidine transport in neutral and basic amino acid transporter (NBAT)-expressing Xenopus laevis oocytes. Evidence for two functionally distinct transport mechanisms induced by NBAT expression. J Biol Chem. 1997 Jan 3;272(1):125–130. [PubMed] [Google Scholar]
  2. Angelo S., Devés R. Amino acid transport system y+L of human erythrocytes: specificity and cation dependence of the translocation step. J Membr Biol. 1994 Aug;141(2):183–192. doi: 10.1007/BF00238252. [DOI] [PubMed] [Google Scholar]
  3. Barhanin J., Lesage F., Guillemare E., Fink M., Lazdunski M., Romey G. K(V)LQT1 and lsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature. 1996 Nov 7;384(6604):78–80. doi: 10.1038/384078a0. [DOI] [PubMed] [Google Scholar]
  4. Bertran J., Magagnin S., Werner A., Markovich D., Biber J., Testar X., Zorzano A., Kühn L. C., Palacin M., Murer H. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5606–5610. doi: 10.1073/pnas.89.12.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bröer S., Bröer A., Hamprecht B. Expression of Na+-independent isoleucine transport activity from rat brain in Xenopus laevis oocytes. Biochim Biophys Acta. 1994 Jun 1;1192(1):95–100. doi: 10.1016/0005-2736(94)90147-3. [DOI] [PubMed] [Google Scholar]
  7. Bröer S., Bröer A., Hamprecht B. Expression of the surface antigen 4F2hc affects system-L-like neutral-amino-acid-transport activity in mammalian cells. Biochem J. 1997 Jun 1;324(Pt 2):535–541. doi: 10.1042/bj3240535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bröer S., Bröer A., Hamprecht B. The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J. 1995 Dec 15;312(Pt 3):863–870. doi: 10.1042/bj3120863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Busch A. E., Varnum M. D., North R. A., Adelman J. P. An amino acid mutation in a potassium channel that prevents inhibition by protein kinase C. Science. 1992 Mar 27;255(5052):1705–1707. doi: 10.1126/science.1553557. [DOI] [PubMed] [Google Scholar]
  10. Carpenter L., Halestrap A. P. The kinetics, substrate and inhibitor specificity of the lactate transporter of Ehrlich-Lettre tumour cells studied with the intracellular pH indicator BCECF. Biochem J. 1994 Dec 15;304(Pt 3):751–760. doi: 10.1042/bj3040751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chillarón J., Estévez R., Mora C., Wagner C. A., Suessbrich H., Lang F., Gelpí J. L., Testar X., Busch A. E., Zorzano A. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem. 1996 Jul 26;271(30):17761–17770. doi: 10.1074/jbc.271.30.17761. [DOI] [PubMed] [Google Scholar]
  12. Christensen H. N. On the strategy of kinetic discrimination of amino acid transport systems. J Membr Biol. 1985;84(2):97–103. doi: 10.1007/BF01872207. [DOI] [PubMed] [Google Scholar]
  13. Christensen H. N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990 Jan;70(1):43–77. doi: 10.1152/physrev.1990.70.1.43. [DOI] [PubMed] [Google Scholar]
  14. Devés R., Chavez P., Boyd C. A. Identification of a new transport system (y+L) in human erythrocytes that recognizes lysine and leucine with high affinity. J Physiol. 1992 Aug;454:491–501. doi: 10.1113/jphysiol.1992.sp019275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fei Y. J., Prasad P. D., Leibach F. H., Ganapathy V. The amino acid transport system y+L induced in Xenopus laevis oocytes by human choriocarcinoma cell (JAR) mRNA is functionally related to the heavy chain of the 4F2 cell surface antigen. Biochemistry. 1995 Jul 11;34(27):8744–8751. doi: 10.1021/bi00027a025. [DOI] [PubMed] [Google Scholar]
  16. Hemler M. E., Strominger J. L. Characterization of antigen recognized by the monoclonal antibody (4F2): different molecular forms on human T and B lymphoblastoid cell lines. J Immunol. 1982 Aug;129(2):623–628. [PubMed] [Google Scholar]
  17. Ljungdahl P. O., Gimeno C. J., Styles C. A., Fink G. R. SHR3: a novel component of the secretory pathway specifically required for localization of amino acid permeases in yeast. Cell. 1992 Oct 30;71(3):463–478. doi: 10.1016/0092-8674(92)90515-e. [DOI] [PubMed] [Google Scholar]
  18. Malandro M. S., Kilberg M. S. Molecular biology of mammalian amino acid transporters. Annu Rev Biochem. 1996;65:305–336. doi: 10.1146/annurev.bi.65.070196.001513. [DOI] [PubMed] [Google Scholar]
  19. McGivan J. D., Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994 Apr 15;299(Pt 2):321–334. doi: 10.1042/bj2990321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mora C., Chillarón J., Calonge M. J., Forgo J., Testar X., Nunes V., Murer H., Zorzano A., Palacín M. The rBAT gene is responsible for L-cystine uptake via the b0,(+)-like amino acid transport system in a "renal proximal tubular" cell line (OK cells). J Biol Chem. 1996 May 3;271(18):10569–10576. doi: 10.1074/jbc.271.18.10569. [DOI] [PubMed] [Google Scholar]
  21. Mosckovitz R., Udenfriend S., Felix A., Heimer E., Tate S. S. Membrane topology of the rat kidney neutral and basic amino acid transporter. FASEB J. 1994 Oct;8(13):1069–1074. doi: 10.1096/fasebj.8.13.7926373. [DOI] [PubMed] [Google Scholar]
  22. Novak D. A., Matthews J. C., Beveridge M. J., Yao S. Y., Young J., Kilberg M. S. Demonstration of system y+L activity on the basal plasma membrane surface of rat placenta and developmentally regulated expression of 4F2HC mRNA. Placenta. 1997 Nov;18(8):643–648. doi: 10.1016/s0143-4004(97)90005-9. [DOI] [PubMed] [Google Scholar]
  23. Palacín M. A new family of proteins (rBAT and 4F2hc) involved in cationic and zwitterionic amino acid transport: a tale of two proteins in search of a transport function. J Exp Biol. 1994 Nov;196:123–137. doi: 10.1242/jeb.196.1.123. [DOI] [PubMed] [Google Scholar]
  24. Palacín M., Chillarón J., Mora C. Role of the b(o,+)-like amino acid-transport system in the renal reabsorption of cystine and dibasic amino acids. Biochem Soc Trans. 1996 Aug;24(3):856–863. doi: 10.1042/bst0240856. [DOI] [PubMed] [Google Scholar]
  25. Peter G. J., Davidson I. G., Ahmed A., McIlroy L., Forrester A. R., Taylor P. M. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes. Biochem J. 1996 Sep 15;318(Pt 3):915–922. doi: 10.1042/bj3180915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tager H. S., Christensen H. N. Transport of the four isomers of 2-aminonorbornane-2-carboxylic acid in selected mammalian systems and in Escherichia coli. J Biol Chem. 1971 Dec 25;246(24):7572–7580. [PubMed] [Google Scholar]
  27. Tate S. S., Yan N., Udenfriend S. Expression cloning of a Na(+)-independent neutral amino acid transporter from rat kidney. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):1–5. doi: 10.1073/pnas.89.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Teixeira S., Di Grandi S., Kühn L. C. Primary structure of the human 4F2 antigen heavy chain predicts a transmembrane protein with a cytoplasmic NH2 terminus. J Biol Chem. 1987 Jul 15;262(20):9574–9580. [PubMed] [Google Scholar]
  29. Van Winkle L. J. Amino acid transport in developing animal oocytes and early conceptuses. Biochim Biophys Acta. 1988 Feb 24;947(1):173–208. doi: 10.1016/0304-4157(88)90024-x. [DOI] [PubMed] [Google Scholar]
  30. Van Winkle L. J., Campione A. L., Gorman J. M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem. 1988 Mar 5;263(7):3150–3163. [PubMed] [Google Scholar]
  31. Van Winkle L. J., Christensen H. N., Campione A. L. Na+-dependent transport of basic, zwitterionic, and bicyclic amino acids by a broad-scope system in mouse blastocysts. J Biol Chem. 1985 Oct 5;260(22):12118–12123. [PubMed] [Google Scholar]
  32. Wang Y., Tate S. S. Oligomeric structure of a renal cystine transporter: implications in cystinuria. FEBS Lett. 1995 Jul 17;368(2):389–392. doi: 10.1016/0014-5793(95)00685-3. [DOI] [PubMed] [Google Scholar]
  33. Wells R. G., Hediger M. A. Cloning of a rat kidney cDNA that stimulates dibasic and neutral amino acid transport and has sequence similarity to glucosidases. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5596–5600. doi: 10.1073/pnas.89.12.5596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wells R. G., Lee W. S., Kanai Y., Leiden J. M., Hediger M. A. The 4F2 antigen heavy chain induces uptake of neutral and dibasic amino acids in Xenopus oocytes. J Biol Chem. 1992 Aug 5;267(22):15285–15288. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES