Abstract
We demonstrate that phospholipid vesicles affect the intrinsic fluorescence of isolated brain spectrin. In the present studies we tested the effects of vesicles prepared from phosphatidylcholine (PtdCho) alone, in addition to vesicles containing PtdCho mixed with other phospholipids [phosphatidylethanolamine (PtdEtn) and phosphatidylserine] as well as from total lipid mixture extracted from brain membrane. The largest effect was observed with PtdEtn/PtdCho (3:2 molar ratio) vesicles; the effect was markedly smaller when vesicles were prepared from egg yolk PtdCho alone. Brain spectrin injected into a subphase induced a substantial increase in the surface pressure of monolayers prepared from phospholipids. Results obtained with this technique indicated that the largest effect is again observed with monolayers prepared from a PtdEtn/PtdCho mixture. The greatest effect was observed when the monolayer contained 50-60% PtdEtn in a PtdEtn/PtdCho mixture. This interaction occurred at salt and pH optima close to physiological conditions (0.15 M NaCl, pH7.5). Experiments with isolated spectrin subunits indicated that the effect of the beta subunit on the monolayer surface pressure resembled that measured with the whole molecule. Similarly to erythrocyte spectrin-membrane interactions, brain spectrin interactions with PtdEtn/PtdCho monolayer were competitively inhibited by isolated erythrocyte ankyrin. This also suggests that the major phospholipid-binding site is located in the beta subunit and indicates the possible physiological significance of this interaction.
Full Text
The Full Text of this article is available as a PDF (192.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett V., Baines A. J., Davis J. Purification of brain analogs of red blood cell membrane skeletal proteins: ankyrin, protein 4.1 (synapsin), spectrin, and spectrin subunits. Methods Enzymol. 1986;134:55–69. doi: 10.1016/0076-6879(86)34075-8. [DOI] [PubMed] [Google Scholar]
- Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
- Bennett V., Stenbuck P. J. Human erythrocyte ankyrin. Purification and properties. J Biol Chem. 1980 Mar 25;255(6):2540–2548. [PubMed] [Google Scholar]
- Białkowska K., Zembroń A., Sikorski A. F. Ankyrin inhibits binding of erythrocyte spectrin to phospholipid vesicles. Biochim Biophys Acta. 1994 Apr 20;1191(1):21–26. doi: 10.1016/0005-2736(94)90228-3. [DOI] [PubMed] [Google Scholar]
- Bitbol M., Dempsey C., Watts A., Devaux P. F. Weak interaction of spectrin with phosphatidylcholine-phosphatidylserine multilayers: a 2H and 31P NMR study. FEBS Lett. 1989 Feb 13;244(1):217–222. doi: 10.1016/0014-5793(89)81196-2. [DOI] [PubMed] [Google Scholar]
- Bodine D. M., 4th, Birkenmeier C. S., Barker J. E. Spectrin deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell. 1984 Jul;37(3):721–729. doi: 10.1016/0092-8674(84)90408-2. [DOI] [PubMed] [Google Scholar]
- Byers T. J., Branton D. Visualization of the protein associations in the erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1985 Sep;82(18):6153–6157. doi: 10.1073/pnas.82.18.6153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cianci C. D., Giorgi M., Morrow J. S. Phosphorylation of ankyrin down-regulates its cooperative interaction with spectrin and protein 3. J Cell Biochem. 1988 Jul;37(3):301–315. doi: 10.1002/jcb.240370305. [DOI] [PubMed] [Google Scholar]
- DIXON M. The determination of enzyme inhibitor constants. Biochem J. 1953 Aug;55(1):170–171. doi: 10.1042/bj0550170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeWolf C., McCauley P., Sikorski A. F., Winlove C. P., Bailey A. I., Kahana E., Pinder J. C., Gratzer W. B. Interaction of dystrophin fragments with model membranes. Biophys J. 1997 Jun;72(6):2599–2604. doi: 10.1016/S0006-3495(97)78903-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Diakowski W., Sikorski A. F. Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry. 1995 Oct 10;34(40):13252–13258. doi: 10.1021/bi00040a041. [DOI] [PubMed] [Google Scholar]
- Evans E. A., Parsegian V. A. Energetics of membrane deformation and adhesion in cell and vesicle aggregation. Ann N Y Acad Sci. 1983;416:13–33. doi: 10.1111/j.1749-6632.1983.tb35176.x. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
- Goodman S. R., Weidner S. A. Binding of spectrin alpha 2-beta 2 tetramers to human erythrocyte membranes. J Biol Chem. 1980 Sep 10;255(17):8082–8086. [PubMed] [Google Scholar]
- Goodman S. R., Zagon I. S., Kulikowski R. R. Identification of a spectrin-like protein in nonerythroid cells. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7570–7574. doi: 10.1073/pnas.78.12.7570. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haest C. W. Interactions between membrane skeleton proteins and the intrinsic domain of the erythrocyte membrane. Biochim Biophys Acta. 1982 Dec;694(4):331–352. doi: 10.1016/0304-4157(82)90001-6. [DOI] [PubMed] [Google Scholar]
- Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
- Hall T. G., Bennett V. Regulatory domains of erythrocyte ankyrin. J Biol Chem. 1987 Aug 5;262(22):10537–10545. [PubMed] [Google Scholar]
- Hartwig J. H. Actin-binding proteins. 1: Spectrin super family. Protein Profile. 1995;2(7):703–800. [PubMed] [Google Scholar]
- Isenberg G. Actin binding proteins--lipid interactions. J Muscle Res Cell Motil. 1991 Apr;12(2):136–144. doi: 10.1007/BF01774032. [DOI] [PubMed] [Google Scholar]
- Isenberg H., Kenna J. G., Green N. M., Gratzer W. B. Binding of hydrophobic ligands to spectrin. FEBS Lett. 1981 Jun 29;129(1):109–112. doi: 10.1016/0014-5793(81)80767-3. [DOI] [PubMed] [Google Scholar]
- Kahana E., Pinder J. C., Smith K. S., Gratzer W. B. Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem J. 1992 Feb 15;282(Pt 1):75–80. doi: 10.1042/bj2820075. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy S. P., Warren S. L., Forget B. G., Morrow J. S. Ankyrin binds to the 15th repetitive unit of erythroid and nonerythroid beta-spectrin. J Cell Biol. 1991 Oct;115(1):267–277. doi: 10.1083/jcb.115.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lazarides E., Woods C. Biogenesis of the red blood cell membrane-skeleton and the control of erythroid morphogenesis. Annu Rev Cell Biol. 1989;5:427–452. doi: 10.1146/annurev.cb.05.110189.002235. [DOI] [PubMed] [Google Scholar]
- Lorenz M., Bisikirska B., Hanus-Lorenz B., Strzalka K., Sikorski A. F. Proteins reacting with anti-spectrin antibodies are present in Chlamydomonas cells. Cell Biol Int. 1995 Jul;19(7):625–632. doi: 10.1006/cbir.1995.1110. [DOI] [PubMed] [Google Scholar]
- Lu P. W., Soong C. J., Tao M. Phosphorylation of ankyrin decreases its affinity for spectrin tetramer. J Biol Chem. 1985 Dec 5;260(28):14958–14964. [PubMed] [Google Scholar]
- MacDonald R. I. Temperature and ionic effects on the interaction of erythroid spectrin with phosphatidylserine membranes. Biochemistry. 1993 Jul 13;32(27):6957–6964. doi: 10.1021/bi00078a021. [DOI] [PubMed] [Google Scholar]
- Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):183–223. doi: 10.1016/s0304-4157(96)00009-3. [DOI] [PubMed] [Google Scholar]
- Michalak K., Bobrowska M., Białkowska K., Szopa J., Sikorski A. F. Interaction of erythrocyte spectrin with some nonbilayer phospholipids. Gen Physiol Biophys. 1994 Feb;13(1):57–62. [PubMed] [Google Scholar]
- Michaud D., Guillet G., Rogers P. A., Charest P. M. Identification of a 220 kDa membrane-associated plant cell protein immunologically related to human beta-spectrin. FEBS Lett. 1991 Dec 2;294(1-2):77–80. doi: 10.1016/0014-5793(91)81347-b. [DOI] [PubMed] [Google Scholar]
- Riederer B. M., Zagon I. S., Goodman S. R. Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within mammalian neural cells. J Cell Biol. 1986 Jun;102(6):2088–2097. doi: 10.1083/jcb.102.6.2088. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sikorski A. F., Kuczek M. Labelling of erythrocyte spectrin in situ with phenylisothiocyanate. Biochim Biophys Acta. 1985 Oct 24;820(1):147–153. doi: 10.1016/0005-2736(85)90226-3. [DOI] [PubMed] [Google Scholar]
- Sikorski A. F., Michalak K., Bobrowska M. Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Biochim Biophys Acta. 1987 Nov 2;904(1):55–60. doi: 10.1016/0005-2736(87)90086-1. [DOI] [PubMed] [Google Scholar]
- Wang D. S., Shaw G. The association of the C-terminal region of beta I sigma II spectrin to brain membranes is mediated by a PH domain, does not require membrane proteins, and coincides with a inositol-1,4,5 triphosphate binding site. Biochem Biophys Res Commun. 1995 Dec 14;217(2):608–615. doi: 10.1006/bbrc.1995.2818. [DOI] [PubMed] [Google Scholar]